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ABSTRACT

Among the class of block-based motion estimators, warping prediction and overlapped block motion estimation
have emerged recently as two of the most effective inter-frame estimation algorithms. Warping estimation is based
on linear operations in the motion field, while overlapped block estimators are based on a linear sum of motion-
based estimators in the intensity field. In this paper, we propose a unified framework for estimation of pixel
intensities based jointly on warping and overlapped blocks. We motivate our estimator through a discussion of
ambiguities in an incomplete (sparsely sampled) motion field; and that different object motions call for resolution
of motion ambiguities in either the motion or intensity domain. We offer a means of optimizing the joint estimator
simultaneously in intensity and motion domains, thus guaranteeing improved performance compared to warping
and overlapped block estimators, which the joint model contains as special cases. Furthermore, the joint framework
provides an excellent vehicle for studying the interactions and relative merits of warping and overlapped block
estimators in the presense of various motion scenarios.
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1 Introduction

Block-based motion estimation methods have played a central role in the development of video coding algo-
rithms. These methods include block-matching, overlapped block motion compensation [1-3], warping [4], and
others [5]. ! Block-matching is employed in many video coding standards such as H.261, MPEG-1 and MPEG-2.
The two other major categories, namely warping — also known as control grid interpolation (CGI) - and overlapped
block motion compensation (OBMC), are more recent developments that have achieved significant improvements
over conventional block matching. Warping was first designed to solve perspective correction problems in com-
puter graphics, and was later applied to video coding [4]. Improved versions of it have been successfully applied
to a number of different inter-frame estimation problems [6,7]. Overlapped block motion compensation (OBMC)
was at first explored with hopes of reducing block artifacts [1], and was later motivated directly as a means of

1 For the lack of a better terminology, we refer to the aggregate of these algorithms as block-based methods. Standard block-matching
is thus only a subset of block-based methods.
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minimizing error energy [3]. In particular, overlapped block motion compensation has come into prominence
through its introduction into the H.263 video coding standard.

Motion compensation models the inter-dependence of consecutive frames through a motion field. Although a
densely sampled motion field almost always carries enough information to reconstruct the present frame completely
from the past frame, transmission of all motions often would require a higher bitrate than the intensity frame
itself. Therefore, block-based methods transmit only a subset of motion vectors, and reconstruct the present frame
through this partial information. This partial motion information leaves some uncertainty at the pixels where a
motion vector is not given. The structure of each block-based method reflects the level of complexity at which
it is willing to address these uncertainties, as well as what it considers to be the dominant mechanism, through
which motion uncertainties assert themselves. According to their computational sophistication, and how well
their assumptions match the realities of particular video sequences, block-based methods have varying degrees of
success, in terms of estimation accuracy, on various video sequences.

This paper proposes a unifying framework for block-based motion estimation methods. While motion vectors
and their relationship with the intensity frames are often characterized through the relationships of the underlying
continuous motion and intensity fields, we prefer to view sampled intensity and motions mainly as two arrays of
data, with the aim of using one data set (motions) to estimate the other (intensity), through operations on both
motion and intensity data sets. From this perspective, various block-based methods differ only in their approach
to using the available (but incomplete) motion information. Some concentrate their efforts in the motion domain
— e.g. warping — while others perform their operations in the intensity domain — e.g. overlapped block estimation.
Our proposed method, on the other hand, considers linear operations in both intensity and motion domains. We
offer a means of optimizing the parameters of a joint estimator simultaneously in intensity and motion domains,
thus guaranteeing improved performance compared to other known block-based methods. This optimization is
achieved through a descent method on the energy function of a representative set of sequences, and is performed
off-line.

In Section 2, we briefly discuss overlapped block and warping motion estimation and how they address motion
field uncertainties. Based on resulting insights, we offer a joint framework for block-based motion estimation. The
resulting motion estimator contains known block-based motion estimation methods as special cases. Section 3, we
develop an iterative algorithm to optimize the parameters of the joint estimator. Section 4 presents experimental
results, and Section 5 closes with some concluding discussions.

2 Motion Estimation Structures and Motion Field Uncertainties

Given that, due to practical considerations, one cannot afford to transmit a motion vector for every pixel,
estimation of intensities requires a method of assigning motion vectors to pixels where the motion array does not
directly provide us with information. In other words, one has to resolve the uncertainty resulting from the absence
of a densely sampled motion field. Different block-based algorithms deal with this uncertainty in different ways.
The structure of each block-based method reflects the approach chosen in characterizing this uncertainty, and
gives each block-based method its distinct flavor and properties.

Among block-based methods, block-matching implicitly assumes that each block of pixels in the past frame
moves with a uniform translational motion. In other words, it allocates each motion vector to the set of pixels that
are closer to it, than to any other motion vector. This resolves the motion ambiguity in a trivial way: although
it is reasonable for a predictor within a block to rely heavily on the motion vector which, in a sense, has been
optimized for that block, motion vectors assigned to neighboring blocks can also contain useful information. More
advanced block based methods resolve motion ambiguities more intelligently, through utilizing the information of
neighboring motion vectors.



As an example of how neighboring motion vectors can be helpful, consider the signals shown in Figure 1. This
simplified one-dimensional example — which we shall refer to as Example 1 — shows I, _1(t) and I (t), representing
the intensities of the previous and current frames respectively. This example represents cases where a rotating
object is viewed at different angles in consecutive frames. We cannot afford to send many motion vectors, and in
this case only the two motion vectors v; and vy are available to the decoder. However, the decoder can make a
very good (in this case errorless) intensity estimate by linearly interpolating nearby motion vectors wherever a
transmitted motion vector is not available. (This is a consequence of the fact that rigid body rotation gives rise
to a linearly varying motion field.) This process essentially defines warping motion estimation.

Now consider the signals shown in Figure 2. In this example — which we shall refer to as Example 2 —
frame k — 1 contains two objects moving with constant velocities v; and vy; with the left object occluding the
right. In the absence of information on t* (the occlusion boundary), which could be anywhere between ¢; and ¢,
(sampling points of block motion field) one cannot make an exact intensity estimate. However, it is possible at
any point ¢t to form two estimates of the intensity based on v; and v;. One can then find an optimal weighting of
resulting intensities based on the statistics of ¢*, which can be extracted from a training sequence. This defines
the principles of overlapped block motion estimation.

Returning to the two-dimensional case, we now introduce the needed notation and formalize an expression
for our estimator. Each frame of the image sequence is defined on a rectangular grid of N pixels. The lattice
is denoted by S, and its members s € S are denoted s = [i,7]*, where i and j denote the row and column
indices respectively. Ir(s) denotes the intensity at pixel s at frame k of the sequence to be coded, fk(s) is
the estimated intensity, and fk(s) is the pixel intensity of the corresponding decoded frame. We omit the pixel
argument when referring to the whole frame, e.g. I. The set V(s) = {v,(s)} represents motion vectors assigned
to blocks neighboring pixel s, with respect to some fixed definition of block neighbors of any pixel. (Note: the
definition of block neighbors of a pixel s will, in general, depend on the pixel position within a block.) A motion
vector is obviously shared among the sets corresponding to many different pixels. Once again, we often omit the
dependence on s for simplicity of expression, and the relationship is implied by context. Finally, gx(s) represents
the intensity gradient of frame k at location s.

Overlapped block motion estimators are characterized by

)= Y wn(s)Fes(s—vm), (1)
v €V(s)

where the set of weights {w,(s)} are determined through an optimization that results in the solution of a linear

system of equations [3].

Warping motion estimators are defined as
B =Fals— Y] an(s)on), (2)
vn€V(s)

where now {a.(s)} are the set of estimator parameters. Warping estimators perform a linear operation in the
motion domain, returning one motion which is used to estimate intensities, whereas overlapped block estimators
use multiple intensity estimates, each with one motion vector only.

We propose the following generalization of the above estimators

fk(s):Zwm(s) Ii_a(s — Z Amn(8) Vn) . (3)

v €V(s)

In the case where [am n] = I, where I is the identity matrix, this estimator reduces to the overlapped block
motion estimator. When [wy,] = [1 0 ... 0]}, it reduces to the warping motion estimator. In its general case, it
offers a more flexible way of resolving motion field ambiguities, and thus reduces the estimation error energy.
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Figure 1: Ezample 1: motion uncertainties are best resolved in motion domain. vy and vy are “block” motion
vectors.
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Figure 2: Ezample 2: motion uncertainties are best resolved in time (space) domain. v1 and vy are “block” motion
vectors.



One may ask: is there any reason to believe that introduction of new (or additional) terms into the estimator
is to any advantage? Note that in a fair comparison, the new estimator should use the same number of motion
vectors as the overlapped block or warping counterpart. In that case, it is perfectly reasonable to ask whether,
in the absence of new information, one can hope for better performance.

Assuming that we used M motion vectors in each of the estimators, overlapped block and warping estimators
will each have M terms, whereas the joint estimator can have up to M? terms. Linear estimation theory asserts
that given M sources of information, any linear sum of them cannot make any further contribution to estimation
accuracy. However, our estimator is not linear in terms of the motion vectors. The gains that we anticipate
are afforded through the non-linear relationship of motion vectors and intensities, which is itself a result of the
complex shape of the intensity terrain.

Returning to the Examples 1 and 2, one can see that a linear operation in either the intensity or motion
domain alone cannot perform well in both cases. In Figure 1, each of motion vectors v; and vy are unsuitable
for areas close to (t1 + t2)/2. Each of v; and vz would produce a grossly mistaken estimate at such points,
and no weighted sum of those estimates can be correct. However, a single estimate based on the correct motion
interpolation can result in errorless estimation. Conversely, in the example of Figure 2, we know that at any point
on the horizontal axis, one of v; or vy is correct. Therefore, one would like to choose between resulting estimates
I, _1(t — v1) or Ix_1(¢t — v2), according to the chances of the point being associated with v; or w;. But in this
case, choosing a motion that is interpolated between v; and vy will return meaningless results. Since each of the
motion and intensity approaches fails for the other case, one is motivated for a joint approach.

The astute reader recognizes that these examples have been deliberately constructed so that in each of them,
motion field ambiguities are resolved nicely — in fact optimally — by one of the two approaches (motion or intensity
domain). Practical cases are often more complicated, and the solution is never so obvious or clear cut. Often times
constituting elements of both these examples co-exist, in which case neither one nor the other of the approaches
is ideally and uniformly suitable, and a joint approach is warranted. The coefficients of this joint approach —
{amn} and {wn} in (3) — should reflect the frequency and degree of occurrence of the phenomena that call for
operations in motion vs. intensity domains. In the following section, we present a method of optimizing these
coefficients from intensity and motion data.

3 Optimal Windows for Joint Overlapped Block and Warping

Recall that the proposed estimator has the form

fk(s) = Zwm fk_l(s — Z Gmn¥n) .

YR EV(S)

We present the following result as an optimality condition. These are zero-gradient conditions imposed on the
expected value of squared error over the training sequence.

Fact: Given the distortion objective function
D(s) = E [|I(s) — fu(s)?] (4)

a set of necessary conditions for the optimality of the joint warping end overlapped block estimator, given above,
is provided by

Zle [fk_l(s — ;) vl gr_1(s — v;)] - F [Ik(s) vl gr-1(s — v;)] =0 Ym,n , (5)
¢
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where

. A
v = Z G,V - (7)

v;€V(s)

While we present this result as an optimality condition, note that it is nothing but a zero-gradient condition
on a squared error cost function, where the cost is written as a function of estimator parameters. Therefore,
using the gradients as indicated above, the estimator parameters can be optimized through an iterative descent
algorithm. We now proceed to derive equations (5) and (6).

The optimality conditions are derived by setting partial derivatives of the distortion cost function to zero.

8D . ol (s)
o = 28| (B0 5) 5 ]
— 2E (fk(s) —Ik(s)) 9 S w fioa(s—07)| =0 . (8)
0am n 7 ¢
But we have
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where we have denoted v; = [v] U;]t. Direct substitution gives
oD - v
=2E | (Ix(s) — I, P_i(s—vp) 10
. (AORSAC) 2w ghals — o) aamm] (10)
Observing that
dv; [0 ifl#m
0am,n _{ v, iff=m ' (11)
we have oD
5a = 2Un P [(Ik(s) —Ik(s)) gty (s — %) un] —0, (12)

Assuming that w,, is non-zero and substituting from the definition of I (s),

S w E [fk_l(s —u) vt gpi(s — v;;)] = B [Ix(s) vt, ge—1(s — v2)] (13)
Z

This establishes the first set of equations. For the second set of conditions:

oD

= 2F
ow,,

(fk(s) - Ik(s)) % Z’wz Tp_a(s — Uz)] ;
™o
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Two sets of equations (5) and (6) reflect optimization with respect to {am,} and {wy,}. Unfortunately, the
equations are coupled and cannot be solved sequentially. The gradient condition (5) is a nonlinear set of equations
and requires an iterative solution. But given {v; }, the gradient condition (6) constitutes a set of linear equations,
which can be solved directly through L-U factorization or other known and efficient techniques. The final solution
is thus achieved through a two phase process: in phase one, we start with fixed {am »} (hence {v}}), and solve the
system of equations for {w,,}. Phase two fixes {w,,} and solves (5) iteratively for {am n}. The final solution is
obtained by starting with an initial guess for {am »} and iterating between these two phases. In our experiments,
equilibrium was achieved in all cases after two or three iterations between phases.

We note that when [am, »] = I, the first set of optimality equations is trivially true, and the second set reduces
to the optimality condition of the overlapped block estimator, as expected.

4 Experimental Results

In this work, we consider estimators that operate on four motion vectors (i.e. m,n,£,¢ € {0,1,2,3}). Each
pixel s chooses the four motion vectors that are closest to it, resulting in a neighborhood structure shown by the
dotted line in Figure 3. Please note that all following figures are illustrated on the array of pixels within the
dotted rectangle.

The most general joint estimator, as characterized in (3), is over-parameterized (under-determined). Aside
from the issue of wasted computation, we found that it offers very little in improved performance or insight
compared to the reduced order model below, which we chose for our experiments.

fk(s): Zwm fk_l(s—vi) 4+ wy fk_l(s—Zanvn) . (15)

m=0 n=0

We also believe that this model is more appropriate for our investigations in that it contains warping and
overlapped block estimators simply as additive terms. It reduces to overlapped block with ws = 0 and to warping
with [wg...w3] = [0...0]. This model can potentially offer insights into the interactions of its warping and overlapped
block constituent parts, mainly through coefficient ws. The magnitude of ws in the optimum estimator provides
some measure of the relative importance of warping and overlapped block in various sequences.

We applied this model to the first ten frames of two standard sequences “football” (352 x 240) and “claire”
(352 x 288). The average mean squared error (MSE) results, using 16 x 16 motion blocks, are shown in Table 1.
Figures 4, 5, and 6 demonstrate the optimum coefficients for “football”. Figures 7, 8, and 9 do the same for
“claire”. The coefficients were taken to be quadrantally symmetric, hence the other, unshown coefficients can be
obtained by 90° rotations of the given plots, i.e.

ao(i,j) =ar(N—i—1,5) =ay(i, N—j—1)=ag(N —i—1,N —j — 1)
wo(i,j) = wi(N —i—1,5) =wa(4, N—j— 1) =wg(N =i — 1, N —j — 1) (16)

where N = 16 in our case. To clarify this symmetry, Figure 4 shows all four coefficients {ao, ... ,as}. For economy
of presentation, we show only ag and wg in the rest of the experiments.



Figure 3: Block motion grid and motion vectors used in predicting pizel s. Solid squares specify motion blocks,
and the dotted rectangle delineates pizels that use the four motion vectors vo, v1, vy and vz for estimation.

Observe the difference between the profile of “cross-coefficient” ws in the two cases. In “football”, this
coefficient has average 0.29, which means that optimally warping (CGI) provides roughly %30 of the estimate
and overlapped block (OBMC) the other %70. In “claire”, however, ws has an average of 0.80. This shows a
large variation in the relationship of warping and overlapped block estimators from one source to another.

In “football”, going from overlapped block to the joint approach over the first 10 frames yields a gain of less
than 2% (0.07dB) in MSE. In “claire”, the same comparison shows a 7.4% (0.3 dB) improvement in MSE. The
situation is reversed when comparing CGI with the joint estimator (of course the jointly optimal estimator is
always superior; we are only comparing the gains).

5 Conclusion

This paper presented a unified framework for block-based motion estimation and compensation. In a sense
the joint framework is a generalization of warping and overlapped block motion estimators. The joint estimator
is motivated by motion ambiguities that are inherent in any block-based motion estimation algorithm. Some
situations call for resolving these ambiguities in the intensity domain, while others necessitate doing so in the mo-
tion domain. The joint estimator recognizes this diversity of motion scenarios through allowing linear operations
in both motion and intensity domains. Since there exists a method of optimizing — according to the statistics
of representative sequences — the coefficients of the joint estimator, one can tailor the joint estimator to match
different motion mechanisms, without the need of explicitly enumerating and accounting for all such mechanisms.
The joint estimator provides a framework in which one can investigate the cross-dependencies and relative merits
of warping and overlapped block motion estimators, in various motion situations.

| Average MSE | block matching | OBMC | CGI |joint approach |

“football” 0-10 195.71 139.30 | 166.15 136.87
“claire” 0-10 4.39 2.97 3.39 2.75

Table 1: Ezperimental results with overlapped block (OBMC), warping (CGI) and joint estimators



We would like to mention briefly that the computations in the joint framework need not necessarily be heavy.
For example, the motion interpolation part can be accomplished through quantizing the interpolator parameters
to sums of powers of two, much like the coefficients of the overlapped blocks in H.263. Since interpolated
motions are no longer necessarily integer valued, interpolation becomes necessary in the intensity domain; but
computations can be substantially reduced through half-pixel interpolation of the past frame, and quantizing
motions to half-pixel accuracy. This does not have a substantial effect on the quality of estimates, and can be
performed in parallel with other coder/decoder operations. Another of major areas of concern in developing video
coding hardware is memory bandwidth. The joint framework needs hardly any more memory access cycles than
the overlapped block algorithm. Also, the savings in memory transfer offered in [8] apply equally well to the joint
estimator.

Current research includes a search for heuristics to either replace optimization, or ease its computational
burden; aiming at an adaptive joint estimator.
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Figure 7: Warping coefficient ag on frames 0-10 Figure 8: Owerlapped block coefficient wo on
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