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ABSTRACT


Overcomplete transforms, like the Dual-Tree Complex
Wavelet Transform, offer more flexible signal representa-
tions than critically-sampled transforms, due to their proper-
ties of shift invariance and directional selectivity. We show
that many transform coefficients can be discarded with-
out much reconstruction quality loss by forcing compen-
satory changes in the remaining coefficients. We consider
the convergence properties of an iterative projection system
for achieving the usual coding aims of good sparsity with
low reconstruction error. Results show how these measures
translate to useful image compression performance.


1. INTRODUCTION


We have previously developed the Dual-Tree Complex
Wavelet Transform (DT CWT) as a useful shift-invariant
and directionally selective image analysis tool [1]. Here we
consider how these properties may be harnessed for image
compression, despite the DT CWT’s 4:1 redundancy (over-
completeness). Matching Pursuits [2] is a well known tech-
nique for coding with overcomplete dictionaries, but it tends
to be very computationally demanding. In this paper we dis-
cuss iterative projection techniques, introduced in [3], in or-
der to achieve efficient coding with potentially lower com-
putational costs. Bolcskei and Hlawatsch [4] have previ-
ously examined the effect of additive noise in oversampled
filter banks systems, and Fischer and Cristobal [5] have pro-
posed an iterative loop similar to ours.


When an overcomplete transform is employed, the in-
verse transform involves a projection from the higher di-
mensional transform space to the lower dimensional image
space; e.g. from 4N -space to N -space in the case of the 4:1
overcomplete DT CWT on an N -pixel image. Hence within
the 4N -space there is the N -dimensional range space and
an orthogonal 3N -dimensional null space of the transform.
Movement within the range space produces changes in the
output image whereas movement within the null space pro-
duces no change; and so different configurations of wavelet
coefficients with the same range space component, but with
different components in null space, can produce the same
decoded output image.
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Fig. 1. Iterative-projection system block diagram. i is the
iteration number.


For image coding purposes, we would like to find the
configuration that concentrates image energy in as few non-
zero wavelet coefficients as possible, while still producing a
good approximation to the original image. The scheme pre-
sented here attempts iteratively to modify large coefficients
to compensate as far as possible for the loss of small coef-
ficients, by minimizing the error between the output image
and the original.


2. TRANSFORM PROJECTIONS


Figure 1 shows the block diagram of our iterative algorithm.
Let x be an N -vector representing the original N -pixel real-
valued image in 1D-vectorized form, and let A be the M×N
DT CWT analysis operator matrix, where M = 4N and the
rows of A are purely real and alternately represent the real
and imaginary parts of the transform bases. Then y = Ax,
where y is the M -vector of real and imaginary parts of the
DT CWT coefficients. The real N × M synthesis or recon-
struction operator matrix is R, so that x = Ry. It is then
easy to show that for a perfect reconstruction transform, R
is given by:


R = R̂ + U[I − AR̂] where R̂ = [AT A]−1AT (1)


Hence RA = R̂A = I . Note that U is an arbitrary con-
stant matrix defining a family of possible R’s, AT is the
transpose of A, and R̂ is the pseudo-inverse of A. We shall
assume that the energy of R is minimized, so that U = 0


and R = R̂, which is closely approximated in the DT CWT.







Let S be the space of all transform domain signals y,
obtainable from finite real input signals x; i.e. S is the range
space of A. The projection operator onto S is PS = AR̂. If
S⊥ is the orthogonal complement space of S, the projection
operator onto S⊥ is P⊥ = I−AR̂ so that y = PSy+P⊥y


for any y. From equ. (1) we see that R̂PS = R̂AR̂ = R̂


and R̂P⊥ = R̂ − R̂AR̂ = 0. Hence PSy is the range-
space component of y which defines the output image x =
R̂y, while P⊥y is the null-space component that has no
effect on x.


The non-linear function f(y, θ) in fig. 1 is designed
to suppress small amplitude coefficients, and optionally to
quantize those of larger amplitude. The simplest useful
function is a hard threshold centre-clipper, operating on
the magnitudes of the complex coefficients to eliminate in-
significant coefficients and leave the significant coefficients
unaffected. It produces ŷ = f(y, θ), where the two com-
ponents of the kth complex element of ŷ, for k = 1 . . . 2N ,
are given by:


ŷ2k−1 + j ŷ2k =


{


0 if |y2k−1 + j y2k| < θ
y2k−1 + j y2k otherwise


(2)


When i = 0, yi is initialized to y0, the transform of x.
The centre-clipper then sets all small coefficients of yi to be
zero in ŷi. The error image ei is the error between x and
x̂i, the inverse transform of the sparse vector ŷi.


Assuming k = 1 for the moment, wi is the transform
of ei, and each wavelet coefficient in wi defines the amount
of each wavelet basis function present in the error image.
These components tend to modify the non-zero coefficients
of ŷ0 such that they are increased in amplitude while the
coefficients of y1, which were set to zero in ŷ0, tend to be
reduced compared with their amplitudes in y0. In this way,
the error e1 after one iteration of the loop is significantly re-
duced compared with the initial error e0. Further iterations
continue to reduce the error ei until convergence occurs.


For a more rigorous analysis, we split yi+1 into its
range-space and null-space components:


yi+1 = ŷi + wi = ŷi + kA(x − R̂ŷi) (3)


= ŷi + ky0 − kPS ŷi = ky0 + (I − kPS)ŷi


= y0 + P⊥ŷi if k = 1 (4)


Hence, if k = 1, each new y equals the original y0 plus
any null-space components of the previous ŷ. Since the null
space is orthogonal to the range space, the range space com-
ponent PSyi = PSy0 = y0 for all i; and so the inverse
transform of every yi will be x (i.e. every yi is a valid
representation of x in the transform domain).


3. CONVERGENCE ANALYSIS


We may analyze convergence using the theory of Projection
onto Convex Sets (POCS). Following Yang [6], a set is con-
vex if any linear interpolation between any two members of


the set is also in the set. The projection Pif onto a set Ci


from an arbitrary vector f finds the member of Ci that is
closest to f .


If the nonlinear function in fig. 1 is a centre-clipper, as
defined in equ. (2), we may separate the clipping action into
two steps: the first step selects which coefficients of yi are
to be retained, by generating a mask vector mi of zeros
and ones; the second step multiplies yi by mi (element-by-
element) to give ŷi. Given the mask mi, this second step is
a projection P1 from yi onto the convex set C1 of all vectors
whose non-zero elements are those selected by ones in the
mask. Hence ŷi = P1yi .


From equ. (4), the remaining parts of the loop in fig. 1
may be shown, if k = 1, to be a projection P2 from ŷi


to yi+1 = P2ŷi, where the convex set C2 is now the set
of all vectors whose range-space component is y0 = Ax.
Hence our loop comprises repeated projections between C1


and C2, given by yi+1 = P2P1yi.
If the choice of mask mi were fixed for all iterations,


then sets C1 and C2 would be constant and, by the theory of
POCS, the loop would converge either to a point where the
two sets overlap or to the closest pair of points in the two
sets if they do not overlap (the more likely case for lossy
compression). But mi is not constant, so we invoke the
following argument.


If we first choose m0 based on picking the largest Mnz


complex coefficients from y0 as the non-zeros, and then
iterate the POCS loop for L iterations with mi = m0


(i.e. with constant C1) until ŷi approximately converges, we
find the optimum ŷi given that mi = m0. At convergence,
yi+1 ' yi and so the transform domain loop error is


yi − ŷi ' yi+1 − ŷi = wi = Aei (5)


which is entirely within S. Now we can pick a better
mi = mL, where mL is based on selecting the largest
Mnz coefficients from yL as the non-zeros (as in a centre-
clipper). This modifies C1 so that the error ||yi − ŷi|| be-
comes smaller. This will result in a smaller image domain
error ||ei|| for two reasons: (a) because ei = R(y0 − ŷi) =
R(yi − ŷi); and (b) because the new yi − ŷi will probably
no longer be in S and so ei, its projection into the image
space, will be smaller still. Hence modifying the mask at
regular intervals to simulate a centre-clipper, can produce
further reductions in loop error, in addition to the reductions
produced by POCS with a fixed mask.


From here we can argue that updating the mask on ev-
ery iteration will produce more rapid convergence than up-
dating it less frequently after waiting for the POCS to con-
verge each time. This converts our two-step clipper back
into a regular centre-clipper, and shows that the loop with
centre-clip non-linearity will converge to a point which lo-
cally minimizes the image domain error ||ei||. Our experi-
ments support the validity of this argument.
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Fig. 2. Convergence of the PSNR (dB) vs number of non-
zero complex coefficients Mnz for various increasing, con-
stant and decreasing trajectories of Mnz with i, over 30
iterations in each case. The dashed line shows the rate-
distortion curve for the non-redundant DWT, for compari-
son. (Note: the DWT coefficients are real, not complex.)


4. CONVERGENCE EXPERIMENTS


We now turn to ways of encouraging the local minimum
to be a good one. We consider the effect of adapting the
sparsity of ŷi with iteration i.


First, note that there is hysteresis in the system. Suppose
the clipping threshold is gradually being reduced. When a
coefficient first exceeds the threshold, it suddenly appears
in ŷi. Subsequent iterations of the loop tend to increase the
amplitude of this coefficient significantly above the thresh-
old. We would then have to raise the clipping threshold to
perhaps twice its original value before that coefficient would
disappear from ŷi again. Hence there is hysteresis and the
order in which coefficients are selected or removed during
convergence becomes important.


Figure 2 illustrates a test of this by plotting PSNR (=
10 log10(255


2N/||ei||
2) against number of non-zero coeffi-


cients Mnz . We use the 512× 512 Lena image and 5 levels
of wavelet decomposition. The six solid curves with crosses
indicate how the PSNR varies with Mnz , starting from six
different initial values of Mnz and all converging on a fi-
nal desired Mnz = 12000 . The initial values are 2400,
4000, 8000, 12000, 18000 and 36000; and in each case
Mnz converges to 12000 over 26 iterations in a geomet-
ric series. Four further iterations are then performed with
Mnz = 12000 to allow final convergence. We see that the
curve with constant Mnz has the worst performance, and
that it is better to increment Mnz from quite a low initial
value than to decrement it from a high value.


Taking the best result (the left-hand curve), it is clear
that considerable performance gains are possible compared
with a non-iterated system, whose performance is shown
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Fig. 3. PSNR (dB) vs. Mnz for the best iterative DT CWT
scheme (upper curve), the non-iterated DWT (dashed curve)
and the non-iterated DT CWT (lower curve).


by the initial points on each of the six curves. For exam-
ple we see that the best converged result achieves almost
the same PSNR with 12000 coefficients (38.79 dB) that
the non-iterated DT CWT achieves with 36000 coefficients
(38.77 dB). Looking vertically, we also see that the best con-
verged result is 4.66 dB better than the non-iterated result of
34.11 dB.


There are several ways to obtain small improvements on
the basic POCS loop, described above. Two of these are:


(a) There is loss around the loop due to both projection
processes. We can compensate for this by increasing
k. From equ. (4), range-space components of ŷi have
a gain of (1− k). For stability (1− k) must lie inside
the unit circle, so 0 < k < 2. In practice, we use
k = 1.8 .


(b) The hysteresis of the system is caused by the very
high gain of the centre-clipper characteristic around
its threshold. To reduce this problem we replace the
clipper with a similar non-linear function that has lim-
ited maximum slope, such as the Wiener denoising
function:


ŷ =











0 if |y| < θ


y .
|y|2 − θ2


|y|2
otherwise


(6)


This has zero gain below threshold and closely ap-
proximates unit gain when |y| � θ, but it is con-
tinuous and has a maximum gradient of 2. If this
function replaces the centre-clipper for the early it-
erations, then better patterns of non-zero coefficients
are indeed produced and there is less need for the it-
erations to start with a very small value of Mnz .


These improvements contribute a small gain in final PSNR
(typically 0.3 to 0.9 dB) and some improvement in rate of
convergence. Figure 3 compares the performance of the best







iterated DT CWT scheme (for k = 1.8) over a range of
Mnz values, with that of the DWT and DT CWT (both non-
iterated). The iterated curve was produced by first using
15 iterations of Wiener non-linearity and then 15 iterations
of centre-clipping to converge to a good starting point with
Mnz = 2400. Then we incremented Mnz by about 2% on
each of 100 further iterations to produce the 100 points in
fig. 3. This figure seems to show a dramatic superiority for
the iterated DT CWT scheme, but the complex DT CWT
coefficients will need more bits to code each of them than
the real DWT coefficients. However this will be much less
than twice as many bits, because in a sparse data set the
location of each non-zero coefficient often requires more
bits to code it than the magnitude and sign (or phase) do.


5. CODING RESULTS


We now consider fully quantized systems (not just centre-
clipped ones) and estimate the bit rate based on simple en-
tropy measurements of the quantized data at each scale.
Proper coding methods such as those used in SPIHT and
JPEG2000 will give small improvements over simple en-
tropy, but the relative performances of the energy compres-
sion and quantization processes, which are the main topic of
this paper, should be little altered by this. For all the results
in this paper we used the standard Daubechies (9,7)-tap fil-
ters in the DWT and the following filters in the DT CWT
[1]: (13,19)-tap near-orthogonal filters at level 1, 14-tap Q-
shift filters below level 1.


For these tests, we took the upper curve of fig. 3 and
at every third point introduced a 2-D circularly symmetric
complex quantizer into the loop in place of the centre clip-
per. The quantizer has Voronoi regions, made up of con-
centric rings of equal width ∆R around a circle of diam-
eter 2∆R, centred on the origin. The central circle forms
the ‘zero’ bin of the quantizer and is undivided, while each
ring is divided into approximately ‘square’ sectors for cod-
ing the phase. There are 8 sectors in ring 1, 12 in ring 2, 16
in ring 3 etc. (i.e. 4(k+1) sectors in the ring of inner radius
k∆R). The real coefficients of the DWT are coded using
the equivalent 1-D quantizer in which the central ‘zero’ bin
is of width 2∆R and the other bins are all of width ∆R.


The first-order entropies of the quantized samples were
measured at each wavelet scale, and from these the number
of bits to code the Lena image were calculated over a range
of step sizes. For the iterated DT CWT the average number
of bits to code each non-zero complex coefficient is 13.5
when the PSNR is around 36 dB. For the DWT the average
number of bits to code each non-zero real coefficient is 7.4
at the same PSNR. Figure 4 shows that, over the range 32 to
38 dB, the DT CWT scheme reduces the entropy by a factor
of 0.86 (14%) at around 34 dB PSNR. This is equivalent to
an improvement of 0.65 dB in PSNR for a given entropy.


Subjective comparisons of image quality indicate that
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Fig. 4. PSNR (dB) vs. entropy (bit/pel) for 512×512 Lena,
comparing coding of the complex coefficients of the iterated
DT CWT (solid curve with crosses) with coding of the real
coefficients of the non-iterated DWT (dashed curve).


coding of diagonal edges (such as those on Lena’s hat) can
be significantly improved with the DT CWT approach. The
good directional selectivity of the DT CWT is clearly ben-
eficial here. Further work is required to develop good cod-
ing schemes for the DT CWT (e.g. derivatives of SPIHT)
which take full advantage of the spatial correlations in cod-
ing the locations of the non-zero coefficients. At present the
number of iterations (typically about 30) to achieve good
solutions is rather too high to make the proposed method at-
tractive in real-time coding applications of reasonably large
images, although the decoding process is non-iterative and
very efficient.
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