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ABSTRACT 

A new class of practical fast algorithms is introduced for 
the Discrete Cosine 'nunsfom (DCT), a n  important  trans- 
form that is of particular interest  i n  image compression. 
For a n  8-point DCT only 11 multiplications and 29 additions 
are required. 

A systematic approach is presented to generate t h e  
different members in this class all having the same min- 
imum arithmetic complexity. T h e  s t ructure  of many of 
t h e  published algorithms can be found in members of this 
class. 

An extension of t h e  algorithm for longer transforma- 
t ions is presented. As a result, the 16-point DCT re- 
quires only SI multiplications and  81 additions, which is, 
to our knowledge, less than  t h e  currently published algo- 
rithms. 

1 INTRODUCTION 

The Discrete Cosine Transform (DCT) was first introduced in 1974 
by Ahmed et al [l]. Primarily applied to real data values, this 
transform has found wide applications in image processing, data 
compression, filtering, and other fields. 

A number of fast algorithms for the one-dimensional DCT (1-D 
DCT) have been published in the last decade. A two-dimensional 
DCT can be obtained by applying first a 1-D DCT over the rows 
followed by a 1-D DCT to the columns of the input-data matrix. 
Single-chip implementations have been reported for the 8-bit DCT 
(121) and for the two-dimensional 8 x 8-bit DCT (e.g. [3]). 

The DCT is currently in the process of being standardized 
in different national and international committees because of its 
importance in still picture and video coding. 

The N-point DCT is defined as follows: A given data sequence 
{zn, n = 0,1,2, ..., N - 1) is transformed into the output sequence 
{y", n = 0,1,2, ..., N - 1) by the function given in equation (1). 

2a. (2n + 1) .  k N-1 

y(k) = C . a k .  z(n).cos( 4N 1 (1) 
"=O 

k = 0, ..., N - 1 
where 00 = cos(?); ak = 1 k = 1, ..., N - 1 

In the following sections, several known algorithms for the Dis- 
crete Cosine Transform will first be discussed and their respective 
complexity for length N = 8 will be compared. Then a class of 
new DCT algorithms requiring no more than 11 multiplications 
and 29 additions will be proposed. Furthermore, variations of 
these algorithms will be discussed, including a solution where all 
multiplications are executed in parallel. 

Finally a 16-point algorithm based on the same structure as 
our 8-bit algorithm will be presented. 

2 KNOWN ALGORITHMS 

Many different algorithms to compute the discrete Cosine Trans- 
form have been proposed in recent years ([4], [5], [6], [7], [a], [9], 
[lo]). All of the most recent proposals need 12 multiplications and 
29 additions to complete an &point DCT (see table 1). 
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Table 1: Number of opemtions for an &point DCT 

Chen's fast DCT algorithm [4], the first one published, exhibits 
a very regular structure. The published number of multiplications 
and additions can easily be changed to the numbers shown in 
parenthesis in table 1 by using the same method to calculate a 
rotation as is used in all later publications (3 multiplications and 
3 additions per rotation). 

Wang [5] has a method to easily obtain algorithms for the Dis- 
crete Sine Transform (DST), the Discrete W-Transform (DWT) 
and the Discrete Fourier Transform (DFT) from his DCT algo- 
rithm. 

Lee's algorithm [6] has very regular first stages, but has irregu- 
lar data flow in the last stage and needs the inverse of cosine values 
as coefficients. This can lead to numerical overflow problems. 

Vetterli [7] uses a recursive formula for his algorithm; however, 
additional operations required to connect the recursively calcu- 
lated blocks lead to an increased complexity in the communication- 
structure of his algorithm. 

Suehiro [8] needs fewer multiplications than Wang, but his 
solution still allows to apply Wang's method to obtain algorithms 
for DST, DWT and DFT from the DCT-algorithm. 

Hou [9] proposes a recursive algorithm, basing each DCT of 
length N on two DCTs of length N/2. The algorithm is regular, 
with the exception of the last stage, where some irregularities are 
introduced for larger lengths. 

Duhamel (lo] shows that the theoretical lower hound for an 8. 
point DCT is 11 multiplications. This result is obtained by looking 
at the DCT as an algorithm based on a cyclic convolution, and 
applying methods of Winograd [ll]. Heidemann [12] came to the 
same result. 

However, there are some special solutions, which require less 
multiplications for the actual DCT, but move the complexity to 
another part of the calculation. Examples for these include a 80 

lution based on number theoretical transforms requiring only 8 
multiplications for an 8 bit DCT explained in Duhamel's paper 
([lo]) and the Arithmetic Fourier Transform [13]. The first exam- 
ple causes additional costs for signal transformation and increased 
word-length, the second one requires unequally spaced sampling 
instants for the signal. Therefore both examples do not lead to 
overall less complex solutions than the algorithms mentioned be- 
fore. 

It follows that most of the published algorithms for an Epoint 
Discrete Cosine Transform use only one multiplication more than 
the minimal number reouired. 

3 11-MULTIPLICATION 8-POINT DCT 
ALGOR-ITHMS 

We have found a class of 8-point DCT algorithms requiring only 
11 multiplications and 29 additions. 



In fact, the same method can be applied to many Of the dg0- 
rithms described before to reduce the number Of multiplications 
by one. As will be shown later, some of the algorithms published 
are special members of the class of algorithms presented here. 

The number of multiplications has been reduced to the theo- 

final stage of the odd part can easily be mndened into 6 ad- 
ditions which leads to the structure shown in figure 1,  

4 VARIATIONS OF OUR ALGORITHM 
retical lower bound without an increase in the number of additions 
as with the published algorithms. An algorithm of this 
class is shown in figure 1. The stages of the Algorithm, numbered 

As mentioned above there is an entire class of DCT algorithms 
which have the same number Of multiplications and additions. 
Other solutions can be derived from the one shown in figure 1 in 
different ways. In the following, we distinguish between variations 
of the first or final stages of the structure in figure 1. 

I I 
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Figure 1: Cpoint DCT algorithm with 11 multiplications. For 
Symbols see fisure 2 

1 to 4, are parts that have to be executed in series and can not be 
evaluated in parallel because of data dependencies. However cal- 
culations inside one stage can be parallelized. At the right-hand 
side of figure 1 the structure of the algorithm is shown. In stage 2 
the algorithm separates in two parts, one for the even coefficients, 
one for the odd coefficients. The even part is nothing else than a 
4-point DCT, again separating in even and odd part in stage 3. 

Figure 2 explains the building blocks of the algorithm. 

symbol equations effort 

2 add 

I-c-0 O = J Z . I  1 mult 

Figure 2: symbols used to display an algorithm structure 
The second building block, the rotation, can be calculated us- 

ing only 3 multiplications and 3 additions instead of 4 multipli- 
cations and 2 additions using the equivalence shown in equation 
(2). 

w = a . z o + b . z l  = ( b - a ) . z l + a . ( z o + z l )  
y~ = - b . z o + a . z l  = - ( a + b ) . z o + a . ( z o + z l )  (2) 

The constant C in equation (1) was chosen to be C = 8, 
which results in C . ak = 1 for k = 0, allowing the output yo to be 
evaluated without any multiplication. 

For the DCTN and inverse DCT (IDCTN) these constants 
must satisfy equation (3) in order to obtain the original signal 
unscaled after the forward and inverse transformation. 

4 
CDCT ' CIDCT = (3) 

We include the factor 8 in both the DCT and the IDCT. The 
remaining factor &. can easily be implemented by right-shifting 
the original and/or the transformed signal. Note that the inverse 
DCT uses exactly the same algorithmic structure as the DCT it- 
self, but in reverse order. Outputs thus become inputs and vice 
versa. 

The proposed algorithm separates clearly into even and odd 
parts after the first stage; the even part is further separated follow- 
ing the second stage. The maximum path length is 2 multiplica- 
tions and 4 additions (inside the rotator we count 1 multiplication 
and 2 additions in cascade). This algorithm was generated from 
the full matrix equation in a systematic way using graph transfor- 
mations and equivalence relations (see 1141). The result mentioned 
in [14] actually has 31 additions; however, the 8 additions in the 

In the calculation of the even part of the algorithm (figure 
1, top 4 rows) only the stages 2 and 3 can be exchanged (figure 
3). In the odd part, several different variations are possible: Four 

Figure 3: inversion of stages 2 and 3 of the even pari 

different angles for each of the two rotations in stage 2 can be 
selected. From the 16 combinations of the6e angles, 8 lead to a 
minimum complexity solution (see figure 4). 

-1 
-7 EEeZ-: - - 

Figure 4: variations of stages 2, 3 and 4 of the odd part 

As can be seen, the order of the odd outputs as well as their 
signs can be changed by varying stages 2 , 3  and 4 of the algorithm. 

In each of these variations the block formed by stages 2,3 and 
4 can be reversed aa well (analogous to the even part, see figure 

The algorithm of Suehiro, patented by Toshiba in [15], is a 
variation of our basic algorithm containing reversed stages 2 and 
3 of the even part as well as inverted stages 2 , 3  and 4 of the odd 
part. 

3). 
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Figure 5: variations by inverting add/subtract modules 
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The signs of the output signals and their order can further 
be changed by inverting a cross-add module or a combination of 
them, i.e. by exchanging the adder and the subtractor. By doing 
so in the middle stage of figure 4, the last stage of the algorithm 
changes. This is demonstrated for the first alternative shown in 
figure 4 in figure 5. 

The same transformations can be applied to all 8 variations 
shown in figure 4. As can be seen, all possible orders of the output 
signals can be obtained by choosing the appropriate variation of 
our algorithm. 

4.2 Variations of the First Stage 

Besides the completely symmetrical stage 1 shown in our basic 
algorithm (figure 1) we found four other first stages that lead to 
solutions of the same low complexity. They are shown in figure 6. 

Figure 6: variations of stage 1 of the algorithm 

As an example, figure 7 shows a variation of our algorithm 
starting with the type of stage 1 shown in the leftmost part of 
figure 6. 

stage 1 ' stage 2 ' stage 3 ' stage4 
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Figure 7: ezample algorithm with difierent first stage 

This algorithm is a simplified version of the one described in [2] 
which has been implemented in silicon. Its maximal path length 
is again 2 multiplications and 4 additions, but the separation be- 
tween even and odd path does not occur until after stage 2. This is 
true for all variations of the algorithm which start with one of the 
first stages shown in figure 6. In all of these solutions, further vari- 
ations can be found by exchanging stages 3 and 4 of the odd part 
or by inverting modules M explained in the previous subsection. 

First stages having less than two symmetrical cross add/sub- 
tracts (symmetrical means combining rows n and N - 1 - n) lead 
to solutions having more than 29 additions. 

4.3 Solutions having parallel multipfications 

Whereas in the even part of our algorithm the three multipliek 
tions needed to calculate the rotation can be executed in parallel, 
the odd part always induden signal paths having 2 multiplications 
in cascade. Finding a solution with X pamllel multiplications is 
equivalent to expanding the matrix of the odd part, given in equb 
tion 4 to a diagonal matrix D of size X. 

& il i z  i3 :F VS c7 -E1 Ck =CO@(%) (4) 

87 -cl c3 -e5 c7 

In (4) io,  i ~ ,  i z  and i3 are the inputs to the odd part (after the 
first stage), VI, m, %, and y.r the output DCT coefficients and cl, 
c3, e5 and c7 the matrix coefficients defined in (1). 

The expansion must be performed in a way that the columns of 
D are linear combinations of the input signals, and ita rows can be 
linearly combined to get the odd output coefficients a, m, 95, and 
fh of the DCT. This diagonal matrix can be obtained in two steps: 
first the matrix (4) is expanded by adding new columns represent- 
ing multiplications with sum-terms of the input-signals. The goal 
is to introduce so many zeroes, that in none of the columns more 
than one type of non-zero-values appears. The resulting matrix 
after this first step is shown in equation (5).  This matrix-equation 
requires not more than 9 multiplications. The matrix can be ex- 
panded to a diagonal matrix as shown in equation (6). 

This matrix has dimension 9. Calculating the odd part using 
this matrix (see figure 8) ,  thus leads to an algorithm having a 
total of 12 multiplications and 32 additions (3 multiplications and 
9 additions are used for evaluating the even part, 8 additions are 
needed in the first stage, see figure 1). 

Figure 8: calculation ofthe odd part m'th pamllel multiplicatiom 

The price for having at  most one multiplication per path is, 
therefore, one additional multiplication and 9 additions. 

io il iz i3 21 22 23 24 ZS 

t:,":; - 1  0 0 0 0 0 0 0 0  

0 0 +c5-c7 C l  t c3 0 0 0 0 0 0 

0 0  0 -352 0 0 0 0 0 15 = io t il t iz t i3 (6) 

0 -2; $2; 0 0 0 0 0 0 0 where q = k t i 3  z2 = il t iz 
24 = il t i3 z3 = io t iz 

0 0  0 0 -c3 tc7  0 0 0 0 
0 0  0 0 0 -cl-cs 0 0 0 and y ~ = d t e t h t i  y 3 = c t f t g t i  
0 0  0 0 0 0 -c3-c5 0 0 ys = b t f t h t i y.r = a t e t g +  i 
0 0  0 0 0 0 0 - c 3 t c 5 0  
0 0  0 0 0 0 0 O c 3  

. 



5 16-POINT DISCRETE COSINE 
TRANSFORM 

Although most current implementations use either &bit DCTs or 
8 x 8-bit DCTs, algorithms for extended lengths are interesting 
and will become increasingly important. The number of operations 
needed for several published l ab i t  DCT algorithm is shown in 
table 2. 

-author Chen Wang Lee Vetterli Suehiro Hou 

mult. 44 (35) 35 32 32 32 32 
ref. 141 151 PI 171 PI 191 

add. 74 (83) 83 81 81 81 81 

our 

31 
81 

Alg. 

Table 2: number of operntions for a 16-point DCT 

As Duhamel states in [lo], The lower bound for the number of 
multiplications is only 26. We extended our &bit algorithm in a 
recursive way to the 16-bit algorithm shown in figure 9. It needs 

n 0 
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Figure 9: 16-point DCT algorithm 

31 multiplications and 81 additions, the minimum path length is 
2 multiplications and 6 additions. Although this solution requires 
5 multiplications more than the theoretical lower bound, it can 
still be calculated using the same number of additions, and fewer 
multiplications than the known algorithms. 

6 CONCLUSION 

We have presented a new class of practical fast 8-point DCT d- 
gorithms. These algorithms have only 11 multiplications and 29 
additions. It has been shown here, how these algorithms can be 
varied in order to obtain different communication structures, dif- 
ferent output orders, as well as how to change the signs of the 
outputs. These variations do not impose a higher number of op- 
erations for performing the DCT and can be used to optimize 
hardware implementation. 

An extension for a 16-point DCT results in an algorithm requir- 
ing 31 multiplications and 81 additions. This algorithm does not 
reach the theoretical minimum number of multiplications, but nev- 
ertheless it has one multiplication less than, and the same number 
of additions as the best currently known algorithms. More compli- 
cated graph transformation are involved to achieve the minimum 
theoretical hound. It has further been shown, that an 8-point DCT 
can be calculated with 12 multiplications in pornllel, i.e. with no 
signal path having more than one multiplication in cascade. 
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