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ABSTRACT
In this paper, we improve the performance of intra prediction


and simplify mode decision procedure at the same time. For


these works, we apply a statistical learning method such as


Support Vector Machines for Regression (SVR) to improve


the performance of current H.264 intra prediction via batch


learning. In addition, we only use single Macro Block type


and one intra prediction mode with high prediction perfor-


mance to simplify mode decision procedure. In our knowl-


edge, this work is the first approach to apply a statistical learn-


ing method for prediction of video sequences. Therefore, we


introduce theoretical backgrounds of SVR, and show the pos-


sibility of this challenge for video compression. From the ex-


perimental results, statistical learning based intra prediction


improves significantly the average Peak Signal-to-Noise Ra-


tio of intra prediction than the performance of current H.264.


Index Terms— H.264, Intra prediction, Statistical learn-


ing, Support vector machines.


1. INTRODUCTION
Many works related with intra prediction mainly propose


methods to improve the performance of current H.264 intra


prediction [1] or to decide the best intra prediction mode


with low complexity and minimum loss of performance. The


methods in [2][3] propose fast mode decision in frequency


domain and these in [4] [5] represent how pixel domain intra


predictions are correspond to DCT domain operation. Es-


pecially, reference [4] proposes additional prediction modes


with increased mode decision complexity. Authors of [6]


match a template for 2x2 block with similarity measure in


pixel domain. The approaches in [7][8] imitate motion esti-


mation and compensation to search the best matching block


among the neighbor blocks with sub-pel accuracy to improve


intra prediction performance. Reference [9] proposes a hy-


brid method to use both pixel based intra prediction of current


H.264 and block matching.


In this paper, we improve the performance of intra predic-


tion and simplify mode decision procedure at the same time.


We apply a statistical learning method such as Support Vector


Machines for Regression (SVR) [10, 11, 12] to improve the
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performance of current H.264 intra prediction via batch learn-


ing. Support vector machines for classification and regres-


sion have been developed under profound theoretical back-


ground and they are successfully applied to many classifica-


tion and time series prediction [12]. In order to simplify mode


decision procedure, we only use single Macro Block (MB)


type and one prediction mode, that is, SVR with high predic-


tion performance. We note that average PSNR of intra pre-


diction is around 26dB at the lowest Quantization Parameter


(QP) which is not higher than we expect. Therefore, previous


works [6, 7, 8, 9] improve the performance in PSNR sense but


the improvement is under 1dB. In this proposed method, we


significantly improve the performance more than 1dB.


The rest of this paper is organized as follows. We briefly


introduce current intra prediction of H.264 in section 2. In


section 3, SVR is considered as a batch learning method and


SVR is trained in DCT domain and then applied in intra pre-


diction. Experimental results of SVR based prediction are


presented in section 4. Section 5 concludes the paper.


2. INTRA PREDICTION OF H.264
H.264 [1] uses 9 directional intra prediction modes for 4x4


block and 4 intra prediction modes for 16x16 MB. Key idea of


the H.264 intra prediction is extrapolation of the pixels which


are on row and column directly adjacent to the current block.


All the intra prediction modes of each MB type are performed


in pixel domain through directional extrapolation. Usually,


the best prediction mode is decided via Rate-Distortion (R-D)


optimization to minimize the Lagrangian cost [13][14]. The


prediction errors are transformed by Discrete Cosine Trans-


form (DCT) and then the DCT coefficients are quantized.


The quantization indexes are coded by entropy coding such


as Universal Variable Length Coding (UVLC) and Context


Adaptive Binary Arithmetic Coding (CABAC) [1][15]. Re-


constructed pixels are obtained from adding predicted pixels


and reconstructed errors which result from decoding, inverse


quantization and inverse DCT transformation. Note that these


reconstructed pixels are used for intra prediction instead of


original pixels in order to prevent a drift problem between


encoder and decoder and deblocking filter is not applied to


the reconstructed pixels. This note is also applied to intra


prediction of SVR.
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3. INTRA PREDICTION VIA STATISTICAL
LEARNING METHOD


3.1. Support Vector Machine
We consider SVR as a batch learning method. SVMs are


statistical learning tools based on Vapnik-Chervonenkis (VC)


theory and Structural Risk Minimization (SRM) principles


[12]. SRM is an inductive principle for model selection


which is used for learning from finite training data sets.


It describes a general model of capacity control and pro-


vides a trade-off between hypothesis space complexity (VC


dimension of approximating functions) and the quality of


fitting the training data. Statistical learning theory and SVMs


show that the regularization networks also can approximately


implement SRM principles when an optimal regularization


parameter has been chosen [16]. Therefore, SVR solves


a Regularized Risk (summation of empirical risk and reg-


ularizer) Minimization (RRM) problem to estimate linear


function f(x) = 〈w, Φ(x)〉 + b for ε-incentive loss function


as follows [12]:


min
w,b,ξ,ξ∗


1
2
‖w‖2 + C


N∑


i=1


(ξi + ξ∗i ) (1)


s.t.(〈w,Φ(xi)〉) − yi ≤ ε + ξi


yi − (〈w,Φ(xi)〉) ≤ ε + ξ∗i
ξi, ξ


∗
i ≥ 0, i = 1, ..., N


where C is inverse regularization parameter and Φ is a


nonlinear mapping function from input data x into a high-


dimensional feature space. N denotes the number of training


samples and ξ
(∗)
i are slack variables to allow violation of


condition which is called soft margin. yi are output corre-


sponding to input data xi and ε is a parameter which denotes


zero loss if absolute value of prediction error |yi − f(xi)| is


smaller than ε. The optimization problem (1) is a quadratic


convex optimization problem and its solutions are global op-


timal solutions which is main feature of SVMs. The primal


optimization problem (1) can be solved as a primal opti-


mization view [17] or dual optimization view through the


Lagrangian duality [12]. Two optimization views derive the


same regression function f(x) as a solution of (1) as follows:


f(x) = 〈w, Φ(x)〉 + b =
N∑


i=1


(α∗
i − αi)〈Φ(xi),Φ(x)〉 + b


=
#SV∑


i∈SV


(α∗
i − αi)〈Φ(xi),Φ(x)〉 + b (2)


=
#SV∑


i∈SV


(α∗
i − αi)k(xi, x) + b (3)


where w =
∑N


i=1(α
∗
i − αi)Φ(xi) and α


(∗)
i are dual opti-


mal solutions of a dual optimization problem. Note that in-


put data xi which have non-zero α
(∗)
i are called as Support


f (x)


ε


y − f(x)


Error SVs
Marginal SVs
Non SVs


Fig. 1. Classifications of training input data xi.


Vectors (SVs). After solving (1), training data xi are classi-


fied into three types according to the absolute prediction error


|yi − f(xi)|: marginal SVs, error SVs and non SVs which


are illustrated in Figure 1. Thus, if the absolute prediction


error is equal to ε, the input data xi are called as marginal


SVs and if it is larger than ε, the input data are error SVs and


otherwise, the input data are not SVs whose α(∗) are zero.


Consequently, only support vectors among the training data


contribute regressor output as (2) which gives sparse solutions


to SVMs having the ε-incentive loss function. However, the


sparsity is only achieved by specific loss functions which have


zero-gradient loss functions. Reference [17] denotes that dual


optimal solutions α
(∗)
i are related with gradient of a loss func-


tion, that is, α
(∗)
i are zeros if gradients of a loss function at xi


are zeros. In this paper, we only consider the ε-incentive loss


function for sparse solutions. In order to reduce complexity


of inner products in the high dimensional feature space in (2),


the kernel trick [12] is introduced to compute the inner prod-


ucts in the feature space through a kernel function on input


data xi as follows in (3): k(xi,x) = 〈Φ(xi), Φ(x)〉. Here,


Radial Basis Function (RBF) is considered as a kernel func-


tion in this paper: k(xi,x) = e−γ‖xi−x‖2
. Furthermore, a


kernel function measures similarity among the SVs xi and


test data x.


3.2. Model Selection of Support Vector Machine
Before solving the optimization problem (1), we have to


decide the kernel function k(·), kernel parameter γ, loss


function parameter ε and inverse regularization parameter C
which is known as a model selection. In this paper, well-


known RBF is used and the other parameters are obtained


from Cross Validation (CV). Especially, 5 fold CV is consid-


ered which is that training data xi are divided into 5 sets and


one of 5 sets is used for test and the others are used for train-


ing to decide support vectors and their weights α(∗) for given


parameters and this operation is performed 5 times to choose


a different test set. Finally, the best parameters which give


minimum average Mean Square Error (MSE) through 5 fold


CV are applied to the problem (1). Generally, grid-search


on the parameters γ, ε and C is used for CV [18]. However,


references [19, 20, 21] obtained better performance from Ge-


netic Algorithm (GA) for model selections. GA is powerful


stochastic search and optimization technique based on the


processes of evolution theory. It is excellent for quickly find-


ing an approximate global maximum value. GA uses three
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Fig. 2. Example of a model selection in GA.
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Fig. 3. Classifications of patches in a frame.


operators to generate test patterns: reproduction, crossover


and mutation. In this paper, we use GA Matlab tool box


which is available in [22]. Since reference [23] denotes that


the optimal points of hyper-parameters do not exist uniquely,


model parameters are selected to generate fewer SVs and


smaller C in the case of the same MSE to find sparser solu-


tion and smaller regularized risk in (1). Figure 2 represents


that GA generates better test patterns which are closer to


the global solutions according to generations because of the


smaller (average) minimum MSE. However, it keeps gener-


ating new test patterns from three operators to escape local


minima.


3.3. Intra Prediction of Support Vector Machine
In this subsection, we decide output and input features of


SVR. Output of SVR is a DCT coefficient and input features


xi are DCT coefficients of neighbor MBs. Input features are


classified 5 types from T1 to T5 whose classifications are


based on available neighbor 8x8 MBs as shown in Figure


3. For example, a left MB is only available in T2 classifi-


cation. Main structural difference from H.264 [1] is that 8x8


MB type and 8x8 DCT are only applied instead of 16x16 and


4x4 MB types and 4x4 DCT. Furthermore, DCT domain in-


tra prediction is performed with a single prediction method of


SVR which is compared with the pixel domain prediction of


H.264 with 9 or 4 directional prediction methods. Thus, there


are no needs to allocate bits to indicate a MB type and the


best intra prediction method in our proposed method. Note


that classification types are fixed according to the position of


a frame which is already known at decoder.


Figure 4 illustrates that T5 input features and DCT coef-


ficients of a current MB are predicted from incremental intra


prediction with inverse zig-zag scan order. The highest DCT


Current


MB


A B C


D


8


8


Fig. 4. Patch of SVR intra prediction and incremental intra


prediction.


coefficient is only predicted from the neighbor MBs which


are denoted as A, B, C and D in Figure 4. DCT coefficients of


each MB become a vector via zig-zag scan and then they are


concatenated for a input features xi. If there are no available


neighbor MBs, the highest DCT coefficient of T1 classifica-


tion is coded without intra prediction. Next DCT coefficient


with inverse zig-zag scan order is predicted from neighbor


MBs and the reconstructed highest DCT coefficient which is


obtained from adding a predicted DCT coefficient to the in-


verse quantized DCT coefficient. Finally, a DC coefficient is


predicted from neighbor MBs and AC coefficients of a cur-


rent MB. Incremental intra prediction with inverse zig-zag


scan order overcomes smaller input features. Especially, T1


MB has no neighbor MBs. Therefore, current intra predic-


tion of H.264 [1] subtracts 128 value in pixel domain which


is correspond to subtracting a constant value from a DC co-


efficient in DCT domain. The other directional predictions in


pixel domain only subtract some portions of DCT coefficients


in DCT domain [5]. Incremental intra prediction overcomes


these limitations and utilizes the fact that low frequency DCT


coefficients are important. Thus, DC coefficient and low fre-


quency AC coefficients have higher dimension of input fea-


tures than high frequency AC coefficients.


Figure 5 represents variance of intra prediction errors


at zig-zag scan order DCT coefficients of T5 classification


in Foreman sequence according to three different predic-


tion methods. In this experiment, 8x8 DCT is only applied


for intra prediction errors to all three methods. We use the


base-layer of Joint Scalable Video Model (JSVM) [24] for


intra prediction of H.264 which is compatible with H.264


[1]. Non-incremental intra prediction of SVR does not utilize


current MB information for intra prediction, that is, only uses


neighbor MBs from A to D in Figure 4. Incremental intra


prediction of SVR has smaller variance of prediction errors in


DCT domain than H.264 and non-incremental SVR as shown


in Figure 5. Thus, DCT coefficients of a current MB carry


very important features to SVR learning system.


4. EXPERIMENTAL RESULTS


In this experiment, we assume that encoder and decoder al-


ready have SVs, their weights α(∗), b and kernel parameter γ
which are needed for prediction as in (3). Foreman sequence


is used for training and test. Due to the small number of T1


classification of total frames, every other frames are used for


training of T1 classification. We train SVR of T5 and the
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Fig. 5. Variance of intra prediction errors at T5 classification.
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Fig. 6. Y-PSNR(dB) of SVR intra prediction.


other classifications by using every 20th frames and every 5th


frames, respectively. RBF kernel is considered for a kernel


function and kernel parameter γ, loss function parameter ε
and regularization parameter C are obtained from 5 fold CV


through GA in subsection 3.2. Then, the optimization prob-


lem (1) is solved by LIBSVM tools [25] to decide SVs and


their weights α(∗) for given model parameters.


In Figure 6, the performance of intra prediction of JSVM


[24] at the base layer which is compatible with H.264 [1]


is compared with the performance of SVR with and without


classifications. Here, we only compare PSNR of intra predic-


tion without considering coded bits because side information


to indicate the best prediction mode and MB type is not coded


in SVR method. Thus, SVR intra prediction only use a 8x8


MB type and one prediction mode. Note that PSNR of intra


prediction is obtained from prediction errors Er at each frame


as follows: 10 log10
2552


E2
r


. The regular peak in Figure 6 is due


to the training of every 20th frames. However, the PSNR of


intermediate frames is still very higher than H.264 up to 4dB.


The average Y-PSNR of SVR with class is around 29.11dB


which is over 3dB higher than average PSNR (25.49dB) of


H.264. SVR without class which has only T5 input features


is performed in order to reduce complexity. If there are not


available neighbor MBs, corresponding MBs are considered


zeros. The average PSNR of SVR without class is 27.98dB


which is over 2dB higher than H.264.


5. CONCLUSION
In this paper, we apply SVR to improve the performance of


H.264 intra prediction. Experimental results show that sta-


tistical learning based intra prediction is very promising with


high PSNR prediction gain.
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