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ABSTRACT
In this paper, we improve the performance of intra prediction

and simplify mode decision procedure at the same time. For

these works, we apply a statistical learning method such as

Support Vector Machines for Regression (SVR) to improve

the performance of current H.264 intra prediction via batch

learning. In addition, we only use single Macro Block type

and one intra prediction mode with high prediction perfor-

mance to simplify mode decision procedure. In our knowl-

edge, this work is the first approach to apply a statistical learn-

ing method for prediction of video sequences. Therefore, we

introduce theoretical backgrounds of SVR, and show the pos-

sibility of this challenge for video compression. From the ex-

perimental results, statistical learning based intra prediction

improves significantly the average Peak Signal-to-Noise Ra-

tio of intra prediction than the performance of current H.264.

Index Terms— H.264, Intra prediction, Statistical learn-

ing, Support vector machines.

1. INTRODUCTION
Many works related with intra prediction mainly propose

methods to improve the performance of current H.264 intra

prediction [1] or to decide the best intra prediction mode

with low complexity and minimum loss of performance. The

methods in [2][3] propose fast mode decision in frequency

domain and these in [4] [5] represent how pixel domain intra

predictions are correspond to DCT domain operation. Es-

pecially, reference [4] proposes additional prediction modes

with increased mode decision complexity. Authors of [6]

match a template for 2x2 block with similarity measure in

pixel domain. The approaches in [7][8] imitate motion esti-

mation and compensation to search the best matching block

among the neighbor blocks with sub-pel accuracy to improve

intra prediction performance. Reference [9] proposes a hy-

brid method to use both pixel based intra prediction of current

H.264 and block matching.

In this paper, we improve the performance of intra predic-

tion and simplify mode decision procedure at the same time.

We apply a statistical learning method such as Support Vector

Machines for Regression (SVR) [10, 11, 12] to improve the

This work is supported by CWC and matching fund from UC Discovery

program

performance of current H.264 intra prediction via batch learn-

ing. Support vector machines for classification and regres-

sion have been developed under profound theoretical back-

ground and they are successfully applied to many classifica-

tion and time series prediction [12]. In order to simplify mode

decision procedure, we only use single Macro Block (MB)

type and one prediction mode, that is, SVR with high predic-

tion performance. We note that average PSNR of intra pre-

diction is around 26dB at the lowest Quantization Parameter

(QP) which is not higher than we expect. Therefore, previous

works [6, 7, 8, 9] improve the performance in PSNR sense but

the improvement is under 1dB. In this proposed method, we

significantly improve the performance more than 1dB.

The rest of this paper is organized as follows. We briefly

introduce current intra prediction of H.264 in section 2. In

section 3, SVR is considered as a batch learning method and

SVR is trained in DCT domain and then applied in intra pre-

diction. Experimental results of SVR based prediction are

presented in section 4. Section 5 concludes the paper.

2. INTRA PREDICTION OF H.264
H.264 [1] uses 9 directional intra prediction modes for 4x4

block and 4 intra prediction modes for 16x16 MB. Key idea of

the H.264 intra prediction is extrapolation of the pixels which

are on row and column directly adjacent to the current block.

All the intra prediction modes of each MB type are performed

in pixel domain through directional extrapolation. Usually,

the best prediction mode is decided via Rate-Distortion (R-D)

optimization to minimize the Lagrangian cost [13][14]. The

prediction errors are transformed by Discrete Cosine Trans-

form (DCT) and then the DCT coefficients are quantized.

The quantization indexes are coded by entropy coding such

as Universal Variable Length Coding (UVLC) and Context

Adaptive Binary Arithmetic Coding (CABAC) [1][15]. Re-

constructed pixels are obtained from adding predicted pixels

and reconstructed errors which result from decoding, inverse

quantization and inverse DCT transformation. Note that these

reconstructed pixels are used for intra prediction instead of

original pixels in order to prevent a drift problem between

encoder and decoder and deblocking filter is not applied to

the reconstructed pixels. This note is also applied to intra

prediction of SVR.
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3. INTRA PREDICTION VIA STATISTICAL
LEARNING METHOD

3.1. Support Vector Machine
We consider SVR as a batch learning method. SVMs are

statistical learning tools based on Vapnik-Chervonenkis (VC)

theory and Structural Risk Minimization (SRM) principles

[12]. SRM is an inductive principle for model selection

which is used for learning from finite training data sets.

It describes a general model of capacity control and pro-

vides a trade-off between hypothesis space complexity (VC

dimension of approximating functions) and the quality of

fitting the training data. Statistical learning theory and SVMs

show that the regularization networks also can approximately

implement SRM principles when an optimal regularization

parameter has been chosen [16]. Therefore, SVR solves

a Regularized Risk (summation of empirical risk and reg-

ularizer) Minimization (RRM) problem to estimate linear

function f(x) = 〈w, Φ(x)〉 + b for ε-incentive loss function

as follows [12]:

min
w,b,ξ,ξ∗

1
2
‖w‖2 + C

N∑

i=1

(ξi + ξ∗i ) (1)

s.t.(〈w,Φ(xi)〉) − yi ≤ ε + ξi

yi − (〈w,Φ(xi)〉) ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, ..., N

where C is inverse regularization parameter and Φ is a

nonlinear mapping function from input data x into a high-

dimensional feature space. N denotes the number of training

samples and ξ
(∗)
i are slack variables to allow violation of

condition which is called soft margin. yi are output corre-

sponding to input data xi and ε is a parameter which denotes

zero loss if absolute value of prediction error |yi − f(xi)| is

smaller than ε. The optimization problem (1) is a quadratic

convex optimization problem and its solutions are global op-

timal solutions which is main feature of SVMs. The primal

optimization problem (1) can be solved as a primal opti-

mization view [17] or dual optimization view through the

Lagrangian duality [12]. Two optimization views derive the

same regression function f(x) as a solution of (1) as follows:

f(x) = 〈w, Φ(x)〉 + b =
N∑

i=1

(α∗
i − αi)〈Φ(xi),Φ(x)〉 + b

=
#SV∑

i∈SV

(α∗
i − αi)〈Φ(xi),Φ(x)〉 + b (2)

=
#SV∑

i∈SV

(α∗
i − αi)k(xi, x) + b (3)

where w =
∑N

i=1(α
∗
i − αi)Φ(xi) and α

(∗)
i are dual opti-

mal solutions of a dual optimization problem. Note that in-

put data xi which have non-zero α
(∗)
i are called as Support

f (x)

ε

y − f(x)

Error SVs
Marginal SVs
Non SVs

Fig. 1. Classifications of training input data xi.

Vectors (SVs). After solving (1), training data xi are classi-

fied into three types according to the absolute prediction error

|yi − f(xi)|: marginal SVs, error SVs and non SVs which

are illustrated in Figure 1. Thus, if the absolute prediction

error is equal to ε, the input data xi are called as marginal

SVs and if it is larger than ε, the input data are error SVs and

otherwise, the input data are not SVs whose α(∗) are zero.

Consequently, only support vectors among the training data

contribute regressor output as (2) which gives sparse solutions

to SVMs having the ε-incentive loss function. However, the

sparsity is only achieved by specific loss functions which have

zero-gradient loss functions. Reference [17] denotes that dual

optimal solutions α
(∗)
i are related with gradient of a loss func-

tion, that is, α
(∗)
i are zeros if gradients of a loss function at xi

are zeros. In this paper, we only consider the ε-incentive loss

function for sparse solutions. In order to reduce complexity

of inner products in the high dimensional feature space in (2),

the kernel trick [12] is introduced to compute the inner prod-

ucts in the feature space through a kernel function on input

data xi as follows in (3): k(xi,x) = 〈Φ(xi), Φ(x)〉. Here,

Radial Basis Function (RBF) is considered as a kernel func-

tion in this paper: k(xi,x) = e−γ‖xi−x‖2
. Furthermore, a

kernel function measures similarity among the SVs xi and

test data x.

3.2. Model Selection of Support Vector Machine
Before solving the optimization problem (1), we have to

decide the kernel function k(·), kernel parameter γ, loss

function parameter ε and inverse regularization parameter C
which is known as a model selection. In this paper, well-

known RBF is used and the other parameters are obtained

from Cross Validation (CV). Especially, 5 fold CV is consid-

ered which is that training data xi are divided into 5 sets and

one of 5 sets is used for test and the others are used for train-

ing to decide support vectors and their weights α(∗) for given

parameters and this operation is performed 5 times to choose

a different test set. Finally, the best parameters which give

minimum average Mean Square Error (MSE) through 5 fold

CV are applied to the problem (1). Generally, grid-search

on the parameters γ, ε and C is used for CV [18]. However,

references [19, 20, 21] obtained better performance from Ge-

netic Algorithm (GA) for model selections. GA is powerful

stochastic search and optimization technique based on the

processes of evolution theory. It is excellent for quickly find-

ing an approximate global maximum value. GA uses three
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Fig. 3. Classifications of patches in a frame.

operators to generate test patterns: reproduction, crossover

and mutation. In this paper, we use GA Matlab tool box

which is available in [22]. Since reference [23] denotes that

the optimal points of hyper-parameters do not exist uniquely,

model parameters are selected to generate fewer SVs and

smaller C in the case of the same MSE to find sparser solu-

tion and smaller regularized risk in (1). Figure 2 represents

that GA generates better test patterns which are closer to

the global solutions according to generations because of the

smaller (average) minimum MSE. However, it keeps gener-

ating new test patterns from three operators to escape local

minima.

3.3. Intra Prediction of Support Vector Machine
In this subsection, we decide output and input features of

SVR. Output of SVR is a DCT coefficient and input features

xi are DCT coefficients of neighbor MBs. Input features are

classified 5 types from T1 to T5 whose classifications are

based on available neighbor 8x8 MBs as shown in Figure

3. For example, a left MB is only available in T2 classifi-

cation. Main structural difference from H.264 [1] is that 8x8

MB type and 8x8 DCT are only applied instead of 16x16 and

4x4 MB types and 4x4 DCT. Furthermore, DCT domain in-

tra prediction is performed with a single prediction method of

SVR which is compared with the pixel domain prediction of

H.264 with 9 or 4 directional prediction methods. Thus, there

are no needs to allocate bits to indicate a MB type and the

best intra prediction method in our proposed method. Note

that classification types are fixed according to the position of

a frame which is already known at decoder.

Figure 4 illustrates that T5 input features and DCT coef-

ficients of a current MB are predicted from incremental intra

prediction with inverse zig-zag scan order. The highest DCT

Current

MB

A B C

D

8

8

Fig. 4. Patch of SVR intra prediction and incremental intra

prediction.

coefficient is only predicted from the neighbor MBs which

are denoted as A, B, C and D in Figure 4. DCT coefficients of

each MB become a vector via zig-zag scan and then they are

concatenated for a input features xi. If there are no available

neighbor MBs, the highest DCT coefficient of T1 classifica-

tion is coded without intra prediction. Next DCT coefficient

with inverse zig-zag scan order is predicted from neighbor

MBs and the reconstructed highest DCT coefficient which is

obtained from adding a predicted DCT coefficient to the in-

verse quantized DCT coefficient. Finally, a DC coefficient is

predicted from neighbor MBs and AC coefficients of a cur-

rent MB. Incremental intra prediction with inverse zig-zag

scan order overcomes smaller input features. Especially, T1

MB has no neighbor MBs. Therefore, current intra predic-

tion of H.264 [1] subtracts 128 value in pixel domain which

is correspond to subtracting a constant value from a DC co-

efficient in DCT domain. The other directional predictions in

pixel domain only subtract some portions of DCT coefficients

in DCT domain [5]. Incremental intra prediction overcomes

these limitations and utilizes the fact that low frequency DCT

coefficients are important. Thus, DC coefficient and low fre-

quency AC coefficients have higher dimension of input fea-

tures than high frequency AC coefficients.

Figure 5 represents variance of intra prediction errors

at zig-zag scan order DCT coefficients of T5 classification

in Foreman sequence according to three different predic-

tion methods. In this experiment, 8x8 DCT is only applied

for intra prediction errors to all three methods. We use the

base-layer of Joint Scalable Video Model (JSVM) [24] for

intra prediction of H.264 which is compatible with H.264

[1]. Non-incremental intra prediction of SVR does not utilize

current MB information for intra prediction, that is, only uses

neighbor MBs from A to D in Figure 4. Incremental intra

prediction of SVR has smaller variance of prediction errors in

DCT domain than H.264 and non-incremental SVR as shown

in Figure 5. Thus, DCT coefficients of a current MB carry

very important features to SVR learning system.

4. EXPERIMENTAL RESULTS

In this experiment, we assume that encoder and decoder al-

ready have SVs, their weights α(∗), b and kernel parameter γ
which are needed for prediction as in (3). Foreman sequence

is used for training and test. Due to the small number of T1

classification of total frames, every other frames are used for

training of T1 classification. We train SVR of T5 and the
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other classifications by using every 20th frames and every 5th

frames, respectively. RBF kernel is considered for a kernel

function and kernel parameter γ, loss function parameter ε
and regularization parameter C are obtained from 5 fold CV

through GA in subsection 3.2. Then, the optimization prob-

lem (1) is solved by LIBSVM tools [25] to decide SVs and

their weights α(∗) for given model parameters.

In Figure 6, the performance of intra prediction of JSVM

[24] at the base layer which is compatible with H.264 [1]

is compared with the performance of SVR with and without

classifications. Here, we only compare PSNR of intra predic-

tion without considering coded bits because side information

to indicate the best prediction mode and MB type is not coded

in SVR method. Thus, SVR intra prediction only use a 8x8

MB type and one prediction mode. Note that PSNR of intra

prediction is obtained from prediction errors Er at each frame

as follows: 10 log10
2552

E2
r

. The regular peak in Figure 6 is due

to the training of every 20th frames. However, the PSNR of

intermediate frames is still very higher than H.264 up to 4dB.

The average Y-PSNR of SVR with class is around 29.11dB

which is over 3dB higher than average PSNR (25.49dB) of

H.264. SVR without class which has only T5 input features

is performed in order to reduce complexity. If there are not

available neighbor MBs, corresponding MBs are considered

zeros. The average PSNR of SVR without class is 27.98dB

which is over 2dB higher than H.264.

5. CONCLUSION
In this paper, we apply SVR to improve the performance of

H.264 intra prediction. Experimental results show that sta-

tistical learning based intra prediction is very promising with

high PSNR prediction gain.
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