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Biorthogonal and Nonuniform Lapped
Transforms for Transform Coding with

Reduced Blocking and Ringing Artifacts
Henrique S. Malvar,Fellow, IEEE

Abstract—New lapped transforms are introduced. The lapped
biorthogonal transform (LBT) and hierarchical lapped biorthog-
onal transform (HLBT) are appropriate for image coding, and the
modulated lapped biorthogonal transform (MLBT) and nonuni-
form modulated lapped biorthogonal transform (NMLBT) are
appropriate for audio coding. The HLBT has a significantly lower
computational complexity than the lapped orthogonal transform
(LOT), essentially no blocking artifacts, and fewer ringing arti-
facts than the commonly used discrete cosine transform (DCT).
The LBT and HLBT have transform coding gains that are
typically between 0.5 and 1.2 dB higher than that of the DCT.
Image coding examples using JPEG and embedded zerotree
coders demonstrate the better performance of the LBT and
HLBT. The NMLBT has fewer ringing artifacts and better
reproduction of transient sounds than the MLT, as shown in
audio coding examples. Fast algorithms for both the HLBT and
the NMLBT are presented.

Index Terms—Audio coding, image coding, lapped transforms,
speech coding, transforms.

I. INTRODUCTION

T RANSFORM domain signal processing has many prac-
tical applications, such as adaptive filtering, scrambling,

and coding [1]–[3]. Transform coding (TC) is used in many
video, image, and audio coding standards, such as MPEG
video, MPEG audio, and JPEG [4]. In such applications, the
signal is represented as a linear combination of the transform
basis functions, and the coefficients of such a combina-
tion are called transform coefficients. Signal compression is
achieved by efficient quantization and entropy coding of the
coefficients [4].

Signals such as audio and images have spectral character-
istics that vary significantly in time and space. Therefore,
transform domain representations are usually performed in
blocks of samples. With small enough blocks, the signals
within each block can be considered as having approximately
constant spectra. In TC, the encoder breaks the signal into
blocks of samples (or for images). For each block,
a direct transform operator is used to compute the transform
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Fig. 1. First two LOT basis functions forM = 8.

coefficients for that block. The resulting transform coefficients
are quantized (usually via scalar quantizers [2]) and entropy
encoded. The quantization step size is chosen such that the
output of the entropy encoder fits within the desired bit rate. At
the decoder, each block is reconstructed by first decoding the
transform coefficients and then applying the inverse transform
operator. The inverse transform reconstructs the block as a
linear combination of the transform basis functions weighted
by the reconstructed transform coefficients.

Two kinds of reconstruction artifacts are typical in TC,
mainly at low bit rates: blocking (or tiling) and ringing.
Blocking artifacts arise because the concatenation of the
reconstructed blocks generates signal discontinuities across
block boundaries. Ringing artifacts arise because the quan-
tization errors on the transform coefficients generate signal
reconstruction errors that last for the entire block duration.

Blocking artifacts can be significantly reduced with lapped
transforms (LT’s) [1]. LT basis functions have two key prop-
erties: 1) They are longer than the block size, and 2) they
decay smoothly to near zero at their boundaries. The lapped
orthogonal transform (LOT) [5], which is useful for image
coding applications, has basis function with linear phase (even
or odd symmetry). For blocks with samples, the LOT bases
have length . A plot of the first two basis LOT
functions for ( ) is shown in Fig. 1. The LOT
can be computed via the discrete cosine transform (DCT) and
some additional butterflies [1], [5].

The modulated lapped transform (MLT) [1], which is a
particular form of a cosine-modulated filter bank [1], [2], has
even fewer blocking effects than the LOT. This is because the
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Fig. 2. Flowgraph of the LBT, with~Z defined in [1] and [5]. For the direct transform (left to right)c =
p
2 and for the inverse transform (right

to left) c = 1=2.

MLT window forces its basis functions to decay asymptotically
to zero at their boundaries. The MLT bases are not linear
phase, but that is not an issue for applications such as audio
coding [6].

Ringing artifacts occur in transient signals, such as edges
in images or plosive sounds in audio. One disadvantage of
lapped transforms is that their longer basis functions lead to
more ringing artifacts than block transforms such as the DCT.
In image coding, ringing is perceived as ghosts around edges,
and in audio coding, ringing leads to pre-echo [7].

In this paper, we present new families of lapped transforms
that were designed with the purpose of reducing both blocking
and ringing artifacts. For a given block size , these new
LT’s have low-frequency basis functions that are longer than
those of the DCT and high-frequency basis functions that are
effectively shorter than those of the DCT.

To generate the new multiresolution lapped transforms, it
is necessary first to develop biorthogonal versions of the
LOT and MLT. The lapped biorthogonal transform (LBT)
and the hierarchical lapped biorthogonal transform (HLBT)
are discussed in Section II. Section III introduces the mod-
ulated biorthogonal transform (MLBT) and the nonuniform
modulated biorthogonal transform (NMLBT). Image coding
examples with the HLBT are presented in Section IV, and
audio coding examples with the NMLBT are presented in
Section V. Section VI presents conclusions and future direc-
tions.

II. THE LAPPED BIORTHOGONAL TRANSFORM

The LOT can significantly reduce blocking artifacts in TC of
images [1]. In most cases, however, some residual artifacts are
still visible [5] because the basis functions do not decay exactly
to zero at their boundaries, as shown in Fig. 1. One way to
force the LOT bases to decay to zero is to use biorthogonal
transforms. In a lapped biorthogonal transform (LBT), the
2 direct and inverse transform matrices and do

not satisfy orthogonality constraints, but as a pair, they still
satisfy the orthogonality and lapped orthogonality conditions

and (1)

where is the one-block shift operator [1], [5], and the
superscript denotes matrix transposition. We can say that
the LOT is an LBT in which we add the additional constraint

.
It is clear that LBT’s have more degrees of freedom

than LOT’s. Aase and Ramstad [8] have shown that these
extra degrees of freedom can be used to simultaneously
increase coding gain and smoothness of the synthesis basis
functions (and thus reducing blocking artifacts). The optimal
LBT’s in [8] were obtained by constrained optimization of the
elements of and , and therefore, they do not have a fast
computational algorithm.

Fast-computable LBT’s can be obtained by direct manipula-
tion of the branch transmittances of the fast LOT flowgraph of
[5]. Young and Kingsbury [9] suggested rescaling the DC term
of the intermediate DCT coefficients by a factor of , and
Chan [10] suggested rescaling all the oddly symmetrical DCT
coefficients and optimizing such scaling factors for maximum
coding gain. We propose an LBT definition based on a special
case of Chan’s generalized lapped transform.

We define the direct and inverse LBT by the flowgraph
shown in Fig. 2. It is obtained from the LOT flowgraph in [5]
by multiplying the first oddly symmetrical DCT coefficient
(i.e., the first AC coefficient) by in the inverse transform
(synthesis) and by in the direct transform (analysis). The
traditional LOT corresponds to in Fig. 2.

Some basis functions of the LBT are shown in Fig. 3. They
resemble quite closely those obtained in [8]. We note that
the particular choices for above generate synthesis basis
functions whose asymptotic end values are exactly zero. That
leads to fewer blocking artifacts than the LOT, as discussed
in Section IV.
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(a) (b)

Fig. 3. First two LBT basis functions forM = 8. (a) Analysis (direct
transform). (b) Synthesis (inverse transform).

For coding applications, an important measure of perfor-
mance for a particular transform is the transform coding gain

, which is defined as the ratio of the reconstructed error
variance for straight PCM quantization to the reconstructed
error variance for transform coding [2]

(2)

For high-rate coding and biorthogonal transforms, can
be computed by [8]

(3)

where

variance of the input signal;
variance of the th transform coefficient;
norm of the th synthesis basis function (theth
column of ).

It is the norm to express in decibels.
A commonly used input signal model for image coding is a

first-order Gauss–Markov process with intersample autocorre-
lation coefficient [2], [5], [8]. For such signals, the

is 8.83 dB for the DCT, 9.22 dB for the fast LOT, 9.52
dB for the fast LBT of Fig. 2, and 9.63 dB for the optimal
LBT of [8]. We see that our fast LBT performs quite closely
to the optimal (for which there is no fast algorithm).

The formula in (3) is usually employed to compare the
performance of transforms, even though in most applications,
the high bit rate assumption does not apply. The usual thinking
is that the relative performances of different transforms
should scale proportionally at low bit rates. We will see later
in this section that this is not the case; therefore, a new
formula that takes into account the bit rate is introduced in
the Appendix.

A. Nonuniform Transforms

The LBT is a better alternative to the LOT for coding
applications. It achieves higher coding gain and fewer blocking

Fig. 4. Simplified block diagram of the HLBT forM = 8. The length-2
DCT in the second level corresponds to the+1/�1 butterfly with the scaling
factors (those can be replaced by factors equal to one in the inverse transform
and 1/2 in the direct transform, for example).

(a) (b)

Fig. 5. HLBT basis functions #0, 2, and 3 forM = 8. (a) Analysis (direct
transform). (b) Synthesis (inverse transform).

artifacts at the small cost of one additional multiplication in
the direct and inverse transforms. However, the LBT leads
to as much ringing artifacts as the LOT because of the
long high-frequency functions. An efficient way to reduce
the ringing artifacts is to start with an LBT of half the
desired block size and combine two blocks via the hierarchical
structure described in [11]. Young and Kingsbury used such
a hierarchical construction in [9] with very good results for
video coding.

The hierarchical lapped biorthogonal transform (HLBT) is
defined, for a given block size , as a hierarchical transform
formed with an LBT of size /2 in the first level and a
length-2 DCT in the second level, as shown in Fig. 4. The
basis function of the HLBT are shown in Fig. 5. The first
two functions—#0 and #1—have length 1.5 (which is
shorter than those of the LBT, which have length 2 ).
All other basis functions have length , i.e., half the
length of the LBT functions. We note that the DC synthesis
function #0 is quite smooth, decaying asymptotically to zero at
its boundaries. This is due to the use of LBT’s in the first level
of the hierarchy in Fig. 4. The analysis DC function #0 does
not decay smoothly to zero, but that is not an issue because
the blocking artifacts are generated by the synthesis functions.
If we had used an LOT for the first level of the hierarchy in
Fig. 4, the analysis and synthesis functions would be identical,
and both DC basis functions would not decay to zero at the
boundaries (furthermore, they would also have discontinuities
within the block).
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Fig. 6. Improvement in transform coding gain over the DCT, as a function
of bit rate, for several lapped transforms. Gauss–Markov input signal with
� = 0:95. For bidimensional signals (e.g., images), the gain is approximately
doubled [1], [2].

Fig. 7. First two MLT basis functions forM = 64.

The computational complexity of the HLBT is lower than
that of the LOT. The structure of Fig. 4 leads to 16 multiplies
and 42 adds per block [12], whereas the LOT uses 22
multiplies and 54 adds per block [1] (compared with 13
multiplies and 29 adds for the DCT).

The transform coding gain of the HLBT, for the first-
order Gauss–Markov process with intersample autocorrelation
coefficient , is 9.10 dB, that is, only 0.12 dB below
the LOT and 0.27 dB above the DCT. Using the formulas in
the Appendix, we have computed at low bit rates for
the DCT, LOT, LBT, and HLBT. The results are shown in
Fig. 6. We note that the HLBT has a higher coding gain than
the LOT at rates below 0.5 bits/sample. Therefore, for low bit
rate image coding applications, the HLBT is better than the
LOT in three aspects: reduced blocking and ringing artifacts,
lower computational complexity, and higher coding gain (i.e.,
less quantization noise).

III. T HE MODULATED BIORTHOGONAL TRANSFORM

For audio coding applications, frequency selectivity of the
basis functions is an important property. The better the selec-
tivity, the less the audible effects of uncanceled aliasing due
to coding [1]. Thus, the modulated lapped transform (MLT)
is better suited than the LOT for audio coding applications.
The -channel MLT is defined as a particular instance of the

Fig. 8. MLBT windows for M = 64, � = 0:85, and � = 0. For
comparison, the MLT sine window is shown as a heavier line.

(a) (b)

Fig. 9. First two MLBT basis functions forM = 64, � = 0:85, and� = 0.
(a) Analysis (direct transform). (b) Synthesis (inverse transform).

oddly stacked TDAC [6] cosine-modulated filter bank

(4)

where is the th element of the direct transform
matrix , and is the th element of the inverse
transform matrix . The frequency index varies from 0
to , and time index varies from 0 to 2 . The
modulating cosine functions in (4) are windowed by for
the direct transform (analysis filter bank) and by for the
inverse transform (synthesis filter bank). Assuming symmetric
and identical windows

(5)

the filter bank in (4) achieves perfect reconstruction (which
leads to orthogonal basis functions) if the Princen–Bradley
condition is satisfied [1], [6]

(6)

The MLT is defined by the unique window that makes
for all (that is, DC signals

are captured entirely by the first basis function), which is
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(a)

(b)

(c)

Fig. 10. Frequency responses for basis functions #7, 8, and 9, forM = 64. (a) MLT. (b) MLBT, synthesis (� = 0:85, � = 0). (c) MLBT, analysis.

a necessary condition for maximum coding gain [1]. That
window is given by

(7)

A plot of the first two ( and 1) MLT basis functions for
subbands is shown in Fig. 7.

To generate biorthogonal MLT’s within the formulation
in (4), we need to relax the constraint of identical analysis
and synthesis windows, as suggested by Smart and Bradley
[13], Cheung and Lim [14], Jawerth and Sweldens [15], and
Matviyenko [16]. Assuming a symmetrical synthesis window

and applying the biorthogonality
conditions in (1)–(4), it is easy to verify that (4) generates a
modulated lapped biorthogonal transform (MLBT) if the anal-
ysis window satisfies the generalized Princen–Bradley
conditions [13]–[16]

(8)
and .

If we try to optimize the windows for maximum transform
coding gain (using the equations in the Appendix), we
arrive at the result that the optimal windows converges to the
MLT window of (7) as . Therefore, unlike the LBT of
Section II, the extra degrees of freedom of the MLBT cannot
be used to significantly improve the coding gain. They can
be used, however, to improve the frequency selectivity of the
synthesis basis functions responses, as in the optimized bases
of Matviyenko [16]. They can also be used as a building block
for nonuniform MLT’s, as we will see later in this section.

We define the MLBT as the modulated lapped transform of
(4) with the synthesis window

(9)

and the analysis window defined by (8). The parameter
controls mainly the width of the window, whereascontrols
its end values. A plot of the analysis and synthesis windows
for and is shown in Fig. 8, and Fig. 9 shows
some of the basis functions. The MLT window [which can be
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(a)

(b)

Fig. 11. Flowgraph of the fast MLBT. (a) Direct transform (analysis). (b) Inverse transform (synthesis).

approximated closely by (9) with and ] is
also shown in Fig. 8.

Fig. 10 shows the frequency responses of some of the basis
functions of the MLT and MLBT. The main advantage of the
MLBT over the MLT is an increase of the stopband attenuation
of the synthesis functions at the expense of a reduction in the
stopband attenuation of the analysis functions.

The first sidelobe level of the MLBT frequency responses
can be improved by controlling the parameter. For example,
for , the first sidelobe level of the synthesis responses
improves from 27 to 30 dB (approximating quite closely
the optimal functions of [16]), but the rate of decay of the
sidelobes also reduces with the lower sidelobe level for the
frequency range in Fig. 10 changing from53 to 42 dB. In
audio coding applications, decaying stopband gains such as the
ones in Fig. 10 are better than the quasiequiripple responses
of [16] because aliasing distortions are more perceptible to the
ear for frequency bands that are farther apart.

For , the transform coding gain of the MLBT
is actually lower than that of the MLT. For a Gauss–Markov
signal with , the MLBT has a coding gain of only
8.85 dB, which is significantly lower than that of the LBT of
Section II. Thus, the MLBT would not be suitable for image
coding applications, but it is well suited for audio coding, as
shown in Section V.

A fast computational algorithm for the MLBT can be easily
derived from the MLT algorithm of [1] by simply using the
corresponding windows for the direct and inverse transforms.
The resulting flowgraph is shown in Fig. 11. We note that the
butterfly window operators in Fig. 11 are not orthogonal.

The main reason for the particular choice of the MLBT
window in (9) is the generation of good basis functions in the
nonuniform filterbank structure to be discussed next.

A. Nonuniform Transforms

As discussed above, the main application for modulated
transforms is in speech and audio coding applications. For

those, blocking and ringing artifacts are even more disturbing
than in image coding, due to the high sensitivity of the human
ear. Blocking artifacts lead to disturbing periodic clicks, and
ringing artifacts lead to reverberation and pre-echo.

The MLT is essentially free from blocking artifacts, but
it still leads to noticeable ringing artifacts in audio coding,
mainly at low bit rates [17]. They are more noticeable during
high-frequency transients, whose durations are shorter than the
MLT basis functions. One approach to alleviate the problem,
which was used in the MPEG-2 audio coding standard [18],
is to switch to a shorter block length during transient
sounds. Such a switching strategy requires special asymmetric
windows during the switching periods [18] and increases
encoding complexity.

To reduce the ringing artifacts of the MLT/MLTBT, we
need to generate shorter high-frequency basis functions. That is
equivalent to generating a nonuniform filter bank in which the
high-frequency subbands have larger bandwidths [1]. The hi-
erarchical transform approach [11] that was used in Section II
can be employed but only if an MLT or better is used at the
second level of the tree; a DCT would lead to poor stopband
rejection of the low-frequency functions [17]. With an MLT
in the second level, the basis functions would be about twice
as long, increasing delay for real-time processing.

An alternative approach to generate a nonuniform MLT is
to merge high-frequency subbands, as suggested originally by
Cox [19] and applied specifically for cosine-modulated filter
banks by Lee and Lee in [20]. The nonuniform modulated
lapped biorthogonal transform (NMLBT) is defined by the
flowgraph in Fig. 12. The use of the1/ 1 butterflies makes
the NMLBT a perfect reconstruction transform, unlike those
in [19] and [20].

As shown in Fig. 12, the first basis functions are not
modified, and each pair of the remaining functions
is combined to generate a new pair. The original two basis
functions were centered at frequencies and
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Fig. 12. Simplified block diagram of the NMLBT. Each pair of
high-frequency coefficients is merged into two new coefficients that
correspond to the same subband and different time localizations.

Fig. 13. Example of NMLBT synthesis basis functions #20 and 21 for
M = 64 andN = 16 based on an MLBT with� = 0:85 and � = 0.
They correspond to the same frequency subband but have different time
localizations.

, with bandwidths . Their combination via
the 1/ 1 butterflies generates two new basis functions that
are both centered at with bandwidths . Their
difference now becomes time localization, as shown in Fig. 13.

We can view the NMLBT construction of Fig. 12 as a
dual of the HLBT construction of Fig. 4. With the HLBT,
we start with two length- /2 LBT’s and combine low-
frequency functions via 1/ 1 butterflies to generate longer
low-frequency functions. With the NMLBT, we start with
length- MLBT’s and combine high-frequency functions via

1/ 1 butterflies to generate shorter high-frequency functions.
The HLBT approach leads to perfect time domain separation
and a loss of frequency resolution, whereas the NMLBT
approach leads to good frequency resolution but imperfect
time domain separation.

In Fig. 13, the ratio of the peak absolute value of a basis
function in its central region to its peak values in the central
region of its pair is approximately 7.7. That ratio can be viewed
as a stopregion attenuation of about 17.7 dB. If we had used
the same construction starting with the MLT, the stopregion
attenuation would be only 5.8 (15.2 dB).

An example of the frequency responses of the NMLBT is
shown in Fig. 14. We note that the high-frequency basis func-
tions have better frequency resolution than the low-frequency
ones because they came from merging of two adjacent bands of

Fig. 14. Frequency responses of some of the subbands of the NMLBT
synthesis filterbank forM = 64 andN = 16 based on an MLBT with
� = 0:85 and � = 0.

Fig. 15. Peak SNR for performance for transform-based coders withN = 8

for the “lena2” image. Dashed lines: embedded zerotree; solid lines: JPEG.
Reference: SPIHT (top solid line).

the original filterbank. One advantage of the NMLBT over the
dual-bank approach suggested by Princen [21] is that perfect
reconstruction is preserved, and no special transition filter
is needed. Applications of the NMLBT to audio coding are
discussed in Section V.

IV. I MAGE CODING EXAMPLES

We tested the transforms in Section II with two DCT-
based image coding algorithms: the JPEG coder [22] and the
embedded zero-tree DCT coder (EZDCT) recently introduced
by Xiong et al. [23]. The EZDCT coder replaces the wavelet
transform of the SPIHT (set partitioning in hierarchical trees)
coder of Said and Pearlman [24] (one of the best image
coders reported to date) by DCT’s, with appropriate coefficient
ordering. As discussed in [12], for both coders, we tested the
lapped transforms by simply replacing the DCT by the LOT,
LBT, and HLBT without any other change in the coder.

The coders were tested with the “lena2” image (a 256
256 cut from the well-known 521 512 “Lena” image). The
peak signal-to-noise ratio (PSNR) results are shown in Fig. 15.
For the JPEG coder, the HLBT has a PSNR improvement of
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Fig. 16. Coding examples for image “lena2” at 0.5 bits/pixel. Top row, left to right: original, JPEG encoding with DCT, and JPEG/LOT, PSNR (dB)
= 32.0 and 32.3. Middle row: JPEG/LBT, JPEG/HLBT, and EZDCT with PSNR (dB)= 32.7, 32.4, and 32.9. Bottom row: EZ/LOT, EZ/LBT, and
EZ/HLBT, with PSNR (dB)= 33.4, 34.0, and 33.5.

0.4 dB over the DCT, whereas the LBT shows a PSNR gain
of about 0.7 dB at rates around 0.5 bits/sample. These results
are consistent with the coding gain calculations of Section II.

For the embedded zerotree coder, the performance of the
HLBT is quite close to that of the LBT. Both perform closely
(within 0.8 and 0.4 dB, respectively) to the optimized wavelet-
based SPIHT coder, but the HLBT-based embedded coder
is faster. Compared with the DCT, the HLBT improves the
embedded coder by 0.6 dB.

Fig. 16 shows 160 160 portions of the reconstructed
images, for the rate of 0.5 bits/sample. In the top row (JPEG
results), we see that all lapped transforms have less blocking
than the DCT. The LOT still shows some artifacts, and the

LBT is virtually free from blocking, but both show more
ringing artifacts than the DCT. The HLBT has less blocking
and less ringing than the DCT. The embedded zerotree coded
images in Fig. 16 show the significant improvement achieved
with the biorthogonal lapped transforms. The results with
the HLBT and LBT images are quite similar, as expected
from the curves in Fig. 15, and they both represent a visible
improvement over the DCT-coded image.

V. AUDIO CODING EXAMPLES

To test the performance of the NMLBT for audio coding,
we simulated an audio encoding system in the following way.
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Fig. 17. Audio coding results at 1.5 bits/sample for a castanets sound
sampled at 16 kHz. From top to bottom: Original and coded with the MLT for
M = 64, MLT for M = 32 and NMLBT forM = 64, N = 16, � = 0:85,
and� = 0. The segmental SNR for the reconstructed signals are 14.7, 14.1,
and 15.2 dB, respectively.

For each input signal block, the direct transform is computed,
and all transform coefficients are uniformly quantized. The
quantization step size for the block is chosen as the product of
a constant parametertimes the block standard deviation. The
quantized coefficients are inverse transformed and added to the
reconstructed signal. The parameteris chosen such that the
measured entropy of the quantized transform coefficients for
all blocks equals a prescribed value.

As a test signal, we used an audio waveform sampled at
16 kHz, containing four concatenated sound segments. Each
segment had a length of about 1.5 s and came from four
sources.

1) castanets;
2) horns;
3) female speech;
4) male speech.

We ran the coder simulation with three transforms.

1) MLT for (MLT );
2) MLT for (MLT );
3) NMLBT for , , , and .

The quantized coefficient entropy was fixed at 1.5 bits/sample
by proper choice of in each case. The average segmental
signal-to-noise ratio (SSNR) was 18.0, 17.1, and 17.8 dB,
respectively. Therefore, although 75% of the basis functions
of the NMLBT had about the same length of the MLT, the
NMLBT performance was much closer to that of the MLT.

An example of the results for the castanets segment is shown
in Fig. 17. In terms of SSNR for the segment shown, the
NMLBT is about 0.5 dB better than the MLT and 1.1 dB
better than the MLT . The MLT has the shortest pre-echo
but the highest reconstruction error in the pre-echo region. The
NMLBT has less pre-echo artifacts than the MLT.

Results for a portion of the female segment are shown
in Fig. 18. To stress the transient signal performance, that
segment shows the onset of an utterance. The SSNR for the
NMLBT is about the same as that for the MLTand about
1.5 dB higher than that for the MLT. As with the castanets
signal, the NMLBT leads to fewer pre-echo artifacts than the
MLT .

Fig. 18. Audio coding results at 1.5 bits/sample for a female speech sound
sampled at 16 kHz. From top to bottom: Original and coded with the MLT for
M = 64, MLT for M = 32, and NMLBT forM = 64, N = 16, � = 0:85,
and� = 0. The segmental SNR for the reconstructed signals are 16.2, 14.6,
and 16.1 dB, respectively.

Fig. 19. Audio coding results at 1.5 bits/sample for a male speech sound
sampled at 16 kHz. From top to bottom: Original and coded with the MLT
for M = 64, MLT for M = 32, and NMLBT for M = 64, N = 16,
� = 0:85, and� = 0. The segmental SNR for the reconstructed signals are
19.6, 18.3, and 19.4 dB, respectively.

The better performance of the NMLBT for transient signals
comes at only a small penalty in performance for approxi-
mately stationary signals. This can be seen in Fig. 19, which
shows the results for a portion of the male segment. The SSNR
of the NMLBT is only 0.2 dB below that of the MLT and
about 1.1 dB higher than that for the MLT.

From the audio coding results, it is clear that the NMLBT is
a good alternative to the MLT, leading to better reproduction of
transient sounds with less pre-echo. That is achieved with only
a small penalty in SNR performance (around 0.1–0.2 dB) for
stationary signals.

For adaptive audio coding, an interesting property of the
NMLBT is that the choice of can change on a block-by-
block basis. During stationary regions, we can make ,
which turns the NMLBT into a length- MLBT. During
transient sounds, we can chooseamong a few predetermined
values for best reproduction of the block. By setting ,
for example, we can effectively halve the length of all basis
functions. In that way, we have a time-varying adaptive
transform that maintains good frequency and time resolutions
at all times, without the use of transitional filter banks. Since
the SNR performance of the NMLBT is better than the MLT
for the same block size for transient signals, the adaptive
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approach above would lead to a better SNR performance than
a fixed MLT.

VI. CONCLUSIONS AND FURTHER DIRECTIONS

We have introduced new families of lapped transforms
based on biorthogonal constructions. The lapped biorthogonal
transform (LBT) is generated from the LOT flowgraph by a
simple modification, which leads to higher transform coding
gains and less blocking artifacts. The hierarchical lapped
biorthogonal transform (HLBT), which is built from the LBT,
has two levels of resolution, which leads to shorter high-
frequency functions and smoother low-frequency functions
than the LOT. For image coding applications, the HLBT is
a better choice than the DCT because the HLBT has a higher
coding gain, much less blocking, and fewer ringing artifacts.
These advantages come at a computational overhead of only
30% (compared with 80% for the LOT or LBT) over the DCT.
For the embedded zerotree coder, replacing the DCT with the
HLBT can improve the PSNR performance by more than 0.5
dB. An HLBT-based embedded zerotree coder approaches the
performance of the best wavelet image coders reported to date,
with the advantage of keeping the bulk of its computation
on the DCT’s that are part of the HLBT flowgraph. Thus,
an embedded zerotree HLBT coder can leverage existing
DCT software or hardware and runs faster than the EZW
or SPIHT coders (because good wavelet decompositions use
more multiplies and adds per sample than the HLBT).

The modulated lapped biorthogonal transform (MLBT) is
obtained by relaxing the constraint of identical analysis and
synthesis windows in the MLT filterbank. The use of different
windows does not improve on transform coding gain (for
low-order autoregressive Gauss–Markov signals) but leads to
improved stopband attenuation. Using a simple subband merg-
ing technique, the nonuniform modulated lapped biorthogonal
transform (NMLBT) achieves two levels of resolution by
effectively halving the time duration and doubling the band-
width of the high-frequency basis functions. Audio coding
simulations show that an NMLBT-based coder can achieve
SNR performance close to that of the MLT but with a better
reproduction of transient sounds. The NMLBT also allows for
efficient implementation of time-varying transforms with good
frequency and time resolutions at all times, without the use of
transitional filters.

There are many directions in which further research could
improve on the results presented in this paper. For the HLBT,
JPEG encoding performance may be improved by optimization
of the quantization tables, for example. For the NMLBT,
new window designs and optimized coefficients for merging
of subbands may lead to better time/frequency resolution
tradeoffs.

APPENDIX

COMPUTATION OF CODING GAIN FOR LOW BIT RATES

Consider a Gaussian input signalwith variance and
block autocorrelation matrix . The variance of the trans-
form coefficients are given by , where
is the th column of the direct transform matrix [1].

Assuming the th transform coefficient is quantized with
bits, its quantization distortion is given by ,
assuming ideal quantizers [2]. Under the mild assumption that
the quantization noises are uncorrelated, the total output
noise variance is given by [8]

(A.1)

where is the norm of the th synthesis basis
function.

An optimal bit allocation procedure finds the set of that
minimizes subject to the condition that the total bit rate
should match the available bits for each block

(A.2)

Using standard nonlinear optimization techniques, the so-
lution is a simple variation of the usual log-variance formula
[2]

if positive
otherwise

(A.3)

where is a Lagrange multiplier that is chosen such that (A.2)
is satisfied. The transform coding gain is then given in decibels
by , i.e., the ratio of the
noise for straight quantization of the input signal to the output
noise in (A.1).
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