IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 4, APRIL 1998 1043

Biorthogonal and Nonuniform Lapped
Transforms for Transform Coding with
Reduced Blocking and Ringing Artifacts

Henrique S. MalvarFellow, IEEE

Abstract—New lapped transforms are introduced. The lapped 05 " - T
biorthogonal transform (LBT) and hierarchical lapped biorthog- I | ‘ l
onal transform (HLBT) are appropriate for image coding, and the 0 L l I [
modulated lapped biorthogonal transform (MLBT) and nonuni-
form modulated lapped biorthogonal transform (NMLBT) are
appropriate for audio coding. The HLBT has a significantly lower
computational complexity than the lapped orthogonal transform
(LOT), essentially no blocking artifacts, and fewer ringing arti- 05 j j
facts than the commonly used discrete cosine transform (DCT). ‘ ‘ ‘
The LBT and HLBT have transform coding gains that are 0 -t | L
typically between 0.5 and 1.2 dB higher than that of the DCT. \ ’ ‘ l
Image coding examples using JPEG and embedded zerotree 05t ) . .
coders demonstrate the better performance of the LBT and 5 10 15
HLBT. The NMLBT has fewer ringing artifacts and better
reproduction of transient sounds than the MLT, as shown in Fig. 1. First two LOT basis functions fak/ = 8.
audio coding examples. Fast algorithms for both the HLBT and
the NMLBT are presented.
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coefficients for that block. The resulting transform coefficients
are quantized (usually via scalar quantizers [2]) and entropy
encoded. The quantization step size is chosen such that the
output of the entropy encoder fits within the desired bit rate. At
the decoder, each block is reconstructed by first decoding the
|. INTRODUCTION transform coefficients and then applying the inverse transform
RANSFORM domain signal processing has many praoperator. The inverse transform reconstructs the block as a
tical applications, such as adaptive filtering, scramblinginear combination of the transform basis functions weighted
and coding [1]-[3]. Transform coding (TC) is used in manyy the reconstructed transform coefficients.
video, image, and audio coding standards, such as MPEGwo kinds of reconstruction artifacts are typical in TC,
video, MPEG audio, and JPEG [4]. In such applications, theainly at low bit rates: blocking (or tiling) and ringing.
signal is represented as a linear combination of the transfoBtocking artifacts arise because the concatenation of the
basis functions, and the coefficients of such a combingeconstructed blocks generates signal discontinuities across
tion are called transform coefficients. Signal compression idock boundaries. Ringing artifacts arise because the quan-
achieved by efficient quantization and entropy coding of thiation errors on the transform coefficients generate signal
coefficients [4]. reconstruction errors that last for the entire block duration.
Signals such as audio and images have spectral characteBlocking artifacts can be significantly reduced with lapped
istics that vary significantly in time and space. Thereforéransforms (LT’s) [1]. LT basis functions have two key prop-
transform domain representations are usually performed drties: 1) They are longer than the block size, and 2) they
blocks of samples. With small enough blocks, the signatiecay smoothly to near zero at their boundaries. The lapped
within each block can be considered as having approximatelsthogonal transform (LOT) [5], which is useful for image
constant spectra. In TC, the encoder breaks the signal ictmding applications, has basis function with linear phase (even
blocks of M samples (oM x M for images). For each block, or odd symmetry). For blocks with/ samples, the LOT bases
a direct transform operator is used to compute the transfotrave lengthl, = 2M. A plot of the first two basis LOT
functions forM = 8 (L = 16) is shown in Fig. 1. The LOT
Manuscript received February 15, 1997; revised November 30, 1997. THan be computed via the discrete cosine transform (DCT) and
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Fig. 2. Flowgraph of the LBT, withZ defined in [1] and [5]. For the direct transform (left to righty= /2 and for the inverse transform (right
to left) ¢ = /1/2.

MLT window forces its basis functions to decay asymptoticallgot satisfy orthogonality constraints, but as a pair, they still
to zero at their boundaries. The MLT bases are not linesatisfy the orthogonality and lapped orthogonality conditions
phase, but that is not an issue for applications such as audio
coding [6]. PP, =1 and PIwP,=1I (1)
Ringing artifacts occur in transient signals, such as edges
in images or plosive sounds in audio. One disadvantage vdliere W is the one-block shift operator [1], [5], and the
lapped transforms is that their longer basis functions lead sgperscriptl” denotes matrix transposition. We can say that
more ringing artifacts than block transforms such as the DCthe LOT is an LBT in which we add the additional constraint
In image coding, ringing is perceived as ghosts around edgls, = Ps.
and in audio coding, ringing leads to pre-echo [7]. It is clear that LBT's have more degrees of freedom
In this paper, we present new families of lapped transforntizan LOT’s. Aase and Ramstad [8] have shown that these
that were designed with the purpose of reducing both blockieytra degrees of freedom can be used to simultaneously
and ringing artifacts. For a given block siZe, these new increase coding gain and smoothness of the synthesis basis
LT’s have low-frequency basis functions that are longer thdanctions (and thus reducing blocking artifacts). The optimal
those of the DCT and high-frequency basis functions that dtBT’s in [8] were obtained by constrained optimization of the
effectively shorter than those of the DCT. elements of?, andP,, and therefore, they do not have a fast
To generate the new multiresolution lapped transforms,demputational algorithm.
is necessary first to develop biorthogonal versions of theFast-computable LBT’s can be obtained by direct manipula-
LOT and MLT. The lapped biorthogonal transform (LBT)tion of the branch transmittances of the fast LOT flowgraph of
and the hierarchical lapped biorthogonal transform (HLBTp]. Young and Kingsbury [9] suggested rescaling the DC term
are discussed in Section Il. Section Il introduces the mog@f the intermediate DCT coefficients by a factor @2, and
ulated biorthogonal transform (MLBT) and the nonunifornfhan [10] suggested rescaling all the oddly symmetrical DCT
modulated biorthogonal transform (NMLBT). Image codingoefficients and optimizing such scaling factors for maximum
examples with the HLBT are presented in Section IV, anegbding gain. We propose an LBT definition based on a special
audio coding examples with the NMLBT are presented igase of Chan’s generalized lapped transform.
Section V. Section VI presents conclusions and future direc-We define the direct and inverse LBT by the flowgraph
tions. shown in Fig. 2. It is obtained from the LOT flowgraph in [5]
by multiplying the first oddly symmetrical DCT coefficient
(i.e., the first AC coefficient) by in the inverse transform
(synthesis) and by in the direct transform (analysis). The
The LOT can significantly reduce blocking artifacts in TC ofraditional LOT corresponds to = 1 in Fig. 2.
images [1]. In most cases, however, some residual artifacts ar&ome basis functions of the LBT are shown in Fig. 3. They
still visible [5] because the basis functions do not decay exactlysemble quite closely those obtained in [8]. We note that
to zero at their boundaries, as shown in Fig. 1. One way tioe particular choices for above generate synthesis basis
force the LOT bases to decay to zero is to use biorthogorfiahctions whose asymptotic end values are exactly zero. That
transforms. In a lapped biorthogonal transform (LBT), thkeads to fewer blocking artifacts than the LOT, as discussed
2M x M direct and inverse transform matricBg andP, do in Section IV.

Il. THE LAPPED BIORTHOGONAL TRANSFORM
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Fig. 3. First two LBT basis functions fodr = 8. (a) Analysis (direct
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Fig. 5. HLBT basis functions #0, 2, and 3 faf = 8. (a) Analysis (direct
transform). (b) Synthesis (inverse transform).

For high-rate coding and biorthogonal transformsy can
be computed by [8]

MOT (/)
Gre = {H l((}%) ||fi||2] } ®3)
=1 z

artifacts at the small cost of one additional multiplication in
the direct and inverse transforms. However, the LBT leads
to as much ringing artifacts as the LOT because of the

where long high-frequency functions. An efficient way to reduce
o2 variance of the input signal; the ringing artifacts is to start with an LBT of half the
ol variance of theith transform coefficient; desired block size and combine two blocks via the hierarchical
|l/ill>  norm of theith synthesis basis function (théh structure described in [11]. Young and Kingsbury used such

column of Py). a hierarchical construction in [9] with very good results for
It is the norm to expres&irc in decibels. video coding.

A commonly used input signal model for image coding is a The hierarchical lapped biorthogonal transform (HLBT) is
first-order Gauss—Markov process with intersample autocorgefined, for a given block siz&/, as a hierarchical transform
lation coefficientp = 0.95 [2], [5], [8]. For such signals, the formed with an LBT of sizeM/2 in the first level and a
Grc is 8.83 dB for the DCT, 9.22 dB for the fast LOT, 9.52ength-2 DCT in the second level, as shown in Fig. 4. The
dB for the fast LBT of Fig. 2, and 9.63 dB for the optimabasis function of the HLBT are shown in Fig. 5. The first
LBT of [8]. We see that our fast LBT performs quite closelywo functions—#0 and #1—have length 4/5= 12 (which is
to the optimal (for which there is no fast algorithm). shorter than those of the LBT, which have lengthl 2= 16).

The Gip¢ formulain (3) is usually employed to compare they|| other basis functions have length/ = 8, i.e., half the
performance of transforms, even though in most applicationsngth of the LBT functions. We note that the DC synthesis
the high bit rate assumption does not apply. The usual thinkifRghction #0 is quite smooth, decaying asymptotically to zero at
is that the relativeirc performances of different transformsits houndaries. This is due to the use of LBT’s in the first level
should scale proportionally at low bit rates. We will see latyf the hierarchy in Fig. 4. The analysis DC function #0 does
in this section that this is not the case; therefore, a 68 not decay smoothly to zero, but that is not an issue because
formula that takes into account the bit rate is introduced {Re plocking artifacts are generated by the synthesis functions.
the Appendix. If we had used an LOT for the first level of the hierarchy in
Fig. 4, the analysis and synthesis functions would be identical,
and both DC basis functions would not decay to zero at the

The LBT is a better alternative to the LOT for codingooundaries (furthermore, they would also have discontinuities
applications. It achieves higher coding gain and fewer blockingthin the block).

A. Nonuniform Transforms
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Fig. 6. Improvement in transform coding gain over the DCT, as a function 0 20 20 50 80 100 120
of bit rate, for several lapped transforms. Gauss—Markov input signal with
p = 0.95. For bidimensional signals (e.g., images), the gain is approximateig. 8. MLBT windows for A/ = 64, a = 0.85, and 3 = 0. For

doubled [1], [2]. comparison, the MLT sine window is shown as a heavier line.
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The computational complexity of the HLBT is lower thanOddly stacked TDAC [6] cosine-modulated filter bank

that of the LOT. The structure of Fig. 4 leads to 16 multiplies 2 M+1 1\ 7
and 42 adds per block [12], whereas the LOT uses 20a(n; k) = ha(n) A 8 [(” + B ) <k + 5) M}

multiplies and 54 adds per block [1] (compared with 13

multiplies and 29 adds for the DCT). ps(n, k) = hy(n) y [2 s [(n + M+ 1) <k + 1) l}
The transform coding gait¥rc of the HLBT, for the first- M 2 2) M
order Gauss—Markov process with intersample autocorrelation (4)

coefficientp = 0.95, is 9.10 dB, that is, only 0.12 dB below ) )

the LOT and 0.27 dB above the DCT. Using the formulas iwher_epa(n, k) is then, ,kth element of the direct trgnsform
the Appendix, we have compute@yc at low bit rates for matrix P, andps(n, k) is then, kth glement of.the inverse
the DCT, LOT, LBT, and HLBT. The results are shown jrjransform matrl)_(PS. _The frequ_ency index; varies from 0
Fig. 6. We note that the HLBT has a higher coding gain thaf M - 1 and _t|me md_eXn varies from_O to 3/ —1. The
the LOT at rates below 0.5 bits/sample. Therefore, for low Hi’godulatmg cosine functions in (4) are windowed/y(n) for

rate image coding applications, the HLBT is better than tﬁge direct transform (analysis filter bank) and fay(n,) for the

LOT in three aspects: reduced blocking and ringing artifact§Verse transform (synthesis filter bank). Assuming symmetric

lower computational complexity, and higher coding gain (i.e2"d identical windows

less quantization noise). ha(n) = hs(n) = hs(2M — 1 — ) (5)

the filter bank in (4) achieves perfect reconstruction (which
IIl. THE MODULATED BIORTHOGONAL TRANSFORM leads to orthogonal basis functions) if the Princen—Bradley

For audio coding applications, frequency selectivity of th%ondition is satisfied [1], [6]

basis functions is an important property. The better the selec- R2(n) + h3(n+ M) = 1. (6)
tivity, the less the audible effects of uncanceled aliasing due

to coding [1]. Thus, the modulated lapped transform (MLT) The MLT is defined by the unique window that makes
is better suited than the LOT for audio coding applicationd., p.(n, k) = 0 for all £ # 0 (that is, DC signals
The M-channel MLT is defined as a particular instance of thare captured entirely by the first basis function), which is
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Fig. 10. Frequency responses for basis functions #7, 8, and 9/fer 64. (a) MLT. (b) MLBT, synthesis¢ = 0.85, 3 = 0). (c) MLBT, analysis.

a necessary condition for maximum coding gain [1]. That If we try to optimize the windows for maximum transform

window is given by coding gainG¢ (using the equations in the Appendix), we
arrive at the result that the optimal windows converges to the
hs(n) = sin [(n + l) L} ) MLT_Window of (7) asp — 1. Therefore, unlike the LBT of
2)2M Section I, the extra degrees of freedom of the MLBT cannot

) ) ) be used to significantly improve the coding gain. They can
A plot of the first tW.O =0 ar_1d 1.) MLT basis functions for be used, however, to improve the frequency selectivity of the
M =64 SUbband_S is shown in F|9. 7‘_ ) . synthesis basis functions responses, as in the optimized bases
) To generate biorthogonal MLT's W'th'n _the formulanon_of Matviyenko [16]. They can also be used as a building block
in (4), we need to relax the constraint of identical analyj%r nonuniform MLT'’s, as we will see later in this section.
and synthesis windows, as suggested by Smart and Bra Ie\/Ne define the MLBT as the modulated lapped transform of
[13], Cheung and Lim [14], Jawerth and Sweldens [15], artq) with the synthesis window
Matviyenko [16]. Assuming a symmetrical synthesis window N
hs(n) = hs(2M — 1 — n) and applying the biorthogonality 1 — cos K” + 1) W} 8
conditions in (1)—(4), it is easy to verify that (4) generates a ha(n) = 2M
modulated lapped biorthogonal transform (MLBT) if the anal- ? 2+
ysis windowh,(n) satisfies the generalized Princen—Bradley n=01--,M-1 9

conditions [13]-[16]

and the analysis window defined by (8). The parameter
hs(n) controls mainly the width of the window, wheregscontrols
ha(n) = h2(n) + h2(n+ M)’ n=01,., M-1 its end values. A plot of the analysis and synthesis windows
° ° (8) for a=0.85ands = 0 is shown in Fig. 8, and Fig. 9 shows
and ho(n) = he(2M — 1 — n). some of the basis functions. The MLT window [which can be
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Fig. 11. Flowgraph of the fast MLBT. (a) Direct transform (analysis). (b) Inverse transform (synthesis).

approximated closely by (9) witk = 0.627 and 3 = 0] is those, blocking and ringing artifacts are even more disturbing
also shown in Fig. 8. than in image coding, due to the high sensitivity of the human
Fig. 10 shows the frequency responses of some of the basis. Blocking artifacts lead to disturbing periodic clicks, and
functions of the MLT and MLBT. The main advantage of theinging artifacts lead to reverberation and pre-echo.
MLBT over the MLT is an increase of the stopband attenuation The MLT is essentially free from blocking artifacts, but
of the synthesis functions at the expense of a reduction in tiaestill leads to noticeable ringing artifacts in audio coding,
stopband attenuation of the analysis functions. mainly at low bit rates [17]. They are more noticeable during
The first sidelobe level of the MLBT frequency responsegigh-frequency transients, whose durations are shorter than the
can be improved by controlling the parameter-or example, MLT basis functions. One approach to alleviate the problem,
for 4 = 0.25, the first sidelobe level of the synthesis responsgshich was used in the MPEG-2 audio coding standard [18],
improves from—27 to —30 dB (approximating quite closely s 14 syitch to a shorter block length/ during transient

the optimal functions of [16]), but the rate of decay of th o ; - ;
sidelobes also reduces with the lower sidelobe level for t V\%ﬁgg\/sv'sssmna smtechslr\;\;_:i]t;t]riitegyerr?g;ére[sig]pzcrzl ?ﬁé’:g;eetsnc
frequency range in Fig. 10 changing froab3 to —42 dB. In 9 gp

) . - > . ding complexity.
audio coding applications, decaying stopband gains such as(?ﬁ'%o 7 :
ones in Fig. 10 are better than the quasiequiripple response o reduce the ringing artifacts of the MLT/MLTBT, we

of [16] because aliasing distortions are more perceptible to tHged t0 generate shorter high-frequency basis functions. That is

For M = 8, the transform coding gaifirc of the MLBT high-frequency subbands have larger bandwidths [1]. The hi-
is actually lower than that of the MLT. For a Gauss—Markograrchical transform approach [11] that was used in Section I
signal with p = 0.95, the MLBT has a coding gain of only can be employed but only if an MLT or better is used at the
8.85 dB, which is significantly lower than that of the LBT ofsecond level of the tree; a DCT would lead to poor stopband
Section II. Thus, the MLBT would not be suitable for imagéejection of the low-frequency functions [17]. With an MLT
coding applications, but it is well suited for audio coding, a& the second level, the basis functions would be about twice
shown in Section V. as long, increasing delay for real-time processing.

A fast computational algorithm for the MLBT can be easily An alternative approach to generate a nonuniform MLT is
derived from the MLT algorithm of [1] by simply using theto merge high-frequency subbands, as suggested originally by
corresponding windows for the direct and inverse transfornsox [19] and applied specifically for cosine-modulated filter
The resulting flowgraph is shown in Fig. 11. We note that tHeanks by Lee and Lee in [20]. The nonuniform modulated
butterfly window operators in Fig. 11 are not orthogonal. lapped biorthogonal transform (NMLBT) is defined by the

The main reason for the particular choice of the MLBTlowgraph in Fig. 12. The use of thel/—1 butterflies makes
window in (9) is the generation of good basis functions in ththe NMLBT a perfect reconstruction transform, unlike those
nonuniform filterbank structure to be discussed next. in [19] and [20].

As shown in Fig. 12, the firsiV basis functions are not
modified, and each pair of the remainidd — N functions

As discussed above, the main application for modulatésl combined to generate a new pair. The original two basis
transforms is in speech and audio coding applications. Fonctions were centered at frequencigs+ 1/2)x/M and

A. Nonuniform Transforms
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(1-+3/2)m /M, with bandwidthse/ M. Their combination via. &% "3 SNR or perornance fo tarsformoased ooderswtns
the +1/-1 butterflies generates two new basis functions thRéference: SPIHT (top solid line).

are both centered &t+1)x /M with bandwidth27 /M. Their

difference now becomes time localization, as shown in Fig. 13. i

We can view the NMLBT construction of Fig. 12 as 6{he original filterbank. One advantage_of the NMITBT over the
dual of the HLBT construction of Fig. 4. With the HLBT,dual-bank approach suggested by Princen [21] is that perfect
we start with two lengthi//2 LBT's and combine low- _reconstructlon |§ preserved, and no special _transm_on filter
frequency functions viar1/—1 butterflies to generate longer'S N€eded. Applications of the NMLBT to audio coding are
low-frequency functions. With the NMLBT, we start withdiscussed in Section V.
lengthA/ MLBT’s and combine high-frequency functions via
+1/-1 butterflies to generate shorter high-frequency functions. IV. IMAGE CODING EXAMPLES
The HLBT approach leads to perfect time domain separationWe tested the transforms in Section Il with two DCT-
and a loss of frequency resolution, whereas the NMLBBased image coding algorithms: the JPEG coder [22] and the
approach leads to good frequency resolution but imperfemnbedded zero-tree DCT coder (EZDCT) recently introduced
time domain separation. by Xiong et al. [23]. The EZDCT coder replaces the wavelet

In Fig. 13, the ratio of the peak absolute value of a badisansform of the SPIHT (set partitioning in hierarchical trees)
function in its central region to its peak values in the centrabder of Said and Pearlman [24] (one of the best image
region of its pair is approximately 7.7. That ratio can be viewezbders reported to date) by DCT’s, with appropriate coefficient
as a stopregion attenuation of about 17.7 dB. If we had usediering. As discussed in [12], for both coders, we tested the
the same construction starting with the MLT, the stopregidapped transforms by simply replacing the DCT by the LOT,
attenuation would be only 5.8 (15.2 dB). LBT, and HLBT without any other change in the coder.

An example of the frequency responses of the NMLBT is The coders were tested with the “lena2” image (a 356
shown in Fig. 14. We note that the high-frequency basis fungs6 cut from the well-known 52% 512 “Lena” image). The
tions have better frequency resolution than the low-frequenpgak signal-to-noise ratio (PSNR) results are shown in Fig. 15.
ones because they came from merging of two adjacent band&of the JPEG coder, the HLBT has a PSNR improvement of
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Fig. 16. Coding examples for image “lena2” at 0.5 bits/pixel. Top row, left to right: original, JPEG encoding with DCT, and JPEG/LOT, PSNR (dB)
= 32.0 and 32.3. Middle row: JPEG/LBT, JPEG/HLBT, and EZDCT with PSNR (¢BB2.7, 32.4, and 32.9. Bottom row: EZ/LOT, EZ/LBT, and
EZ/HLBT, with PSNR (dB)= 33.4, 34.0, and 33.5.

0.4 dB over the DCT, whereas the LBT shows a PSNR gaiBT is virtually free from blocking, but both show more
of about 0.7 dB at rates around 0.5 bits/sample. These resuiltgjing artifacts than the DCT. The HLBT has less blocking
are consistent with the coding gain calculations of Section And less ringing than the DCT. The embedded zerotree coded
For the embedded zerotree coder, the performance of theges in Fig. 16 show the significant improvement achieved
HLBT is quite close to that of the LBT. Both perform closelywith the biorthogonal lapped transforms. The results with
(within 0.8 and 0.4 dB, respectively) to the optimized wavelethe HLBT and LBT images are quite similar, as expected
based SPIHT coder, but the HLBT-based embedded codi@m the curves in Fig. 15, and they both represent a visible
is faster. Compared with the DCT, the HLBT improves th#nprovement over the DCT-coded image.
embedded coder by 0.6 dB.
Fig. 16 shows 160x 160 portions of the reconstructed
images, for the rate of 0.5 bits/sample. In the top row (JPEG V. AUDIO CODING EXAMPLES
results), we see that all lapped transforms have less blockingro test the performance of the NMLBT for audio coding,
than the DCT. The LOT still shows some artifacts, and th&e simulated an audio encoding system in the following way.
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Fig. 17. Audio coding results at 1.5 bits/sample for a castanets souhitg- 18. Audio coding results at 1.5 bits/sample for a female speech sound
sampled at 16 kHz. From top to bottom: Original and coded with the MLT fofampled at 16 kHz. From top to bottom: Original and coded with the MLT for
M = 64, MLT for M = 32 and NMLBT for M = 64, N = 16, o = 0.85, M =64, MLT for M = 32, and NMLBT for M/ = 64, N = 16, o = 0.85,
and 8 = 0. The segmental SNR for the reconstructed signals are 14.7, 1420dJ = 0. The segmental SNR for the reconstructed signals are 16.2, 14.6,
and 15.2 dB, respectively. and 16.1 dB, respectively.

For each input signal block, the direct transform is computed,
and all transform coefficients are uniformly quantized. The
quantization step size for the block is chosen as the product of
a constant parametertimes the block standard deviation. The
guantized coefficients are inverse transformed and added to the
reconstructed signal. The parameteis chosen such that the
measured entropy of the quantized transform coefficients for
all blocks equals a prescribed value.

As a test signal, we used an audio waveform sampled at

i

5 10 15 20 25 30 35

16 kHz, containing four concatenated sound segments. Each® Time. ms
segment had a length of about 1.5 s and came from four ’
sources. Fig. 19. Audio coding results at 1.5 bits/sample for a male speech sound
sampled at 16 kHz. From top to bottom: Original and coded with the MLT
1) castanets; for M = 64, MLT for M = 32, and NMLBT for A = 64, N = 16,
2) horns; a = 0.85, and3 = 0. The segmental SNR for the reconstructed signals are

3) female speech; 19.6, 18.3, and 19.4 dB, respectively.

4) male speech.

We ran the coder simulation with three transforms. The better performance of the NMLBT for transient signals
1) MLT for M = 64 (MLT g4); comes at only a small penalty in performance for approxi-
2) MLT for M = 32 (MLT 3,); mately stationary signals. This can be seen in Fig. 19, which

3) NMLBT for M =64, N = 16, a = 0.85, and3 = 0.  Shows the results for a portion of the male segment. The SSNR

The quantized coefficient entropy was fixed at 1.5 bits/samgie the NMLBT is only 0.2 dB below that of the MLd, and
by proper choice ofy in each case. The average segmentdPout 1.1 dB higher than that for the Ml _
signal-to-noise ratio (SSNR) was 18.0, 17.1, and 17.8 dB,From the auqho coding results, |t. is clear that the NMLBT is
respectively. Therefore, although 75% of the basis functiof<d00d alternative to the MLT, leading to better reproduction of
of the NMLBT had about the same length of the MbTthe transient sounds with less pre-echo. That is achieved with only
NMLBT performance was much closer to that of the MLT & small penalty in SNR performance (around 0.1-0.2 dB) for
An example of the results for the castanets segment is shofationary signals.
in Fig. 17. In terms of SSNR for the segment shown, the For adaptive audio coding, an interesting property of the
NMLBT is about 0.5 dB better than the MET and 1.1 dB8 NMLBT is that the choice ofV can change on a block-by-
better than the MLT,. The MLTs, has the shortest pre-echdPlock basis. During stationary regions, we can make= M,
but the highest reconstruction error in the pre-echo region. TW&ich turns the NMLBT into a lengtd4 MLBT. During
NMLBT has less pre-echo artifacts than the MLT transient sounds, we can chogéeamong a few predetermined
Results for a portion of the female segment are showilues for best reproduction of the block. By settiNg= 0,
in Fig. 18. To stress the transient signal performance, tHar example, we can effectively halve the length of all basis
segment shows the onset of an utterance. The SSNR for fhections. In that way, we have a time-varying adaptive
NMLBT is about the same as that for the M{;Tand about transform that maintains good frequency and time resolutions
1.5 dB higher than that for the Mlgf. As with the castanets at all times, without the use of transitional filter banks. Since
signal, the NMLBT leads to fewer pre-echo artifacts than thbe SNR performance of the NMLBT is better than the MLT
MLT g4. for the same block sizé{ for transient signals, the adaptive
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approach above would lead to a better SNR performance thamssuming theith transform coefficient is quantized wifh;

a fixed MLT.

bits, its quantization distortion is given by?, = 272807

i

assuming ideal quantizers [2]. Under the mild assumption that

VI.

We have introduced new families of lapped transforms
based on biorthogonal constructions. The lapped biorthogonal
transform (LBT) is generated from the LOT flowgraph by a
simple modification, which leads to higher transform coding

CONCLUSIONS AND FURTHER DIRECTIONS

the quantization noiseg; are uncorrelated, the total output
noise variance is given by [8]

M—-1

2 : 2
O—(Ii

=0

Sill?

o2 (A.1)

gainS and less b|OCking artifacts. The hierarchical Iapp@ﬂ‘lereriHQ — ||Psz||2 is the norm of theth Synthesis basis
biorthogonal transform (HLBT), which is built from the LBT, fynction.

has two levels of resolution, which leads to shorter high- An optimal bit allocation procedure finds the set/f that
frequency functions and smoother low-frequency functionginimizes o2 subject to the condition that the total bit rate
than the LOT. For image coding applications, the HLBT ighould match the3 available bits for each block

a better choice than the DCT because the HLBT has a higher
coding gain, much less blocking, and fewer ringing artifacts.

These advantages come at a computational overhead of only

30% (compared with 80% for the LOT or LBT) over the DCT.

M—-1

ZBi:B.

=0

(A.2)

For the embedded zerotree coder, replacing the DCT with theSing standard nonlinear optimization techniques, the so-
HLBT can improve the PSNR performance by more than oldtion is a simple variation of the usual log-variance formula

dB. An HLBT-based embedded zerotree coder approaches

performance of the best wavelet image coders reported to date,

with the advantage of keeping the bulk of its computation
on the DCT'’s that are part of the HLBT flowgraph. Thus,

4_{A+%log2<a§i||fi||2>, it positive 5 5
T 0’ .

otherwise

an embedded zerotree HLBT coder can leverage existiW@ere)‘ is a Lagrange multiplier that is chosen such that (A.2)
DCT software or hardware and runs faster than the Ezi#satisfied. The transform coding gain is then given in decibels
or SPIHT coders (because good wavelet decompositions eGrc(B) = 10 logyo(27*P02/07), i.e., the ratio of the

more multiplies and adds per sample than the HLBT).

noise for straight quantization of the input signal to the output

The modulated lapped biorthogonal transform (MLBT) igoise in (A.1).

obtained by relaxing the constraint of identical analysis and
synthesis windows in the MLT filterbank. The use of different
windows does not improve on transform coding gain (fory
low-order autoregressive Gauss—Markov signals) but leads to
improved stopband attenuation. Using a simple subband mer&l
ing technique, the nonuniform modulated lapped biorthogonas;
transform (NMLBT) achieves two levels of resolution by
effectively halving the time duration and doubling the band-
width of the high-frequency basis functions. Audio codingls]
simulations show that an NMLBT-based coder can achieve
SNR performance close to that of the MLT but with a betterg
reproduction of transient sounds. The NMLBT also allows for
efficient implementation of time-varying transforms with good
frequency and time resolutions at all times, without the use off
transitional filters.

There are many directions in which further research coul!
improve on the results presented in this paper. For the HLBT,
JPEG encoding performance may be improved by optimizatiolf]
of the quantization tables, for example. For the NMLBT,
new window designs and optimized coefficients for merging
of subbands may lead to better time/frequency resolutidt!
tradeoffs.

[11]

APPENDIX

COMPUTATION OF CODING GAIN FOR Low BIT RATES [12]

Consider a Gaussian input signalwith variances2 and
block autocorrelation matriR.... The variance of the trans- [13]
form coefficients are given by’ = PLR..P,;, whereP,;
is theith column of the direct transform matri®, [1].
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